Phytoplankton are the base of nearly all marine food webs and mediate the interactions of biotic and abiotic components in marine systems. Understanding the spatial and temporal changes in phytoplankton growth requires comprehensive biological, physical, and chemical information. Long-term datasets are an invaluable tool to study these changes, but they are rare and often include only a small set of measurements.
View Article and Find Full Text PDFFor photosynthetic microbial eukaryotes, the rate-limiting step in NO assimilation is its reduction to nitrite (NO), which is catalyzed by assimilatory nitrate reductase (NR). Oceanic productivity is primarily limited by available nitrogen and, although nitrate is the most abundant form of available nitrogen in oceanic waters, little is known about the identity of microbial eukaryotes that take up nitrate. This lack of knowledge is especially severe for ice-covered seas that are being profoundly affected by climate change.
View Article and Find Full Text PDF