Dearomatization reactions have become fundamental chemical transformations in organic synthesis since they allow for the generation of three-dimensional complexity from two-dimensional precursors, bridging arene feedstocks with alicyclic structures. When those processes are applied to pyridines, quinolines, and isoquinolines, partially or fully saturated nitrogen heterocycles are formed, which are among the most significant structural components of pharmaceuticals and natural products. The inherent challenge of those transformations lies in the low reactivity of heteroaromatic substrates, which makes the dearomatization process thermodynamically unfavorable.
View Article and Find Full Text PDFThe enantioselective synthesis of fluorinated indolizidinone derivatives has been developed. The process involved an enantioselective intramolecular aza-Michael reaction of conjugated amides bearing a pendant α,β-unsaturated ketone moiety, catalyzed by the ()-TRIP-derived phosphoric acid, followed by dimethyltitanocene methylenation and ring closing metathesis (RCM). Final indolizidine-derived products comprise a fluorine-containing tetrasubstituted double bond generated by the RCM reaction, which is a challenging task.
View Article and Find Full Text PDFThe interest in 3,4-dihydropyrimidine-2(1)-(thio)ones is increasing every day, mainly due to their paramount biological relevance. The Biginelli reaction is the classical approach to reaching these scaffolds, although the product diversity suffers from some limitations. In order to overcome these restrictions, two main approaches have been devised.
View Article and Find Full Text PDFSulfone-containing compounds are prevalent building blocks in pharmaceuticals and other biomolecules, and they serve as key intermediates in the synthesis of complex scaffolds. During the past decade, several methods have been developed to access sulfones. These strategies, however, require the use of strong reaction conditions, limiting their substrate scope.
View Article and Find Full Text PDFThe preparation of nonanomeric -acyl-saccharides has been developed from two different carboxylic acid feedstocks. This transformation is driven by the synergistic interaction of an electron donor-acceptor complex and Ni catalysis. Primary-, secondary-, and tertiary redox-active esters are incorporated as coupling partners onto preactivated pyranosyl- and furanosyl acids, preserving their stereochemical integrity.
View Article and Find Full Text PDFA new methodology to access the quinolizidine skeleton in an asymmetric fashion was devised. It involves two consecutive intramolecular aza-Michael reactions of sulfinyl amines bearing a bis-enone moiety, in turn generated by a monodirectional cross metathesis reaction. The sequence, which takes place with excellent yields and diastereocontrol, was applied to the total synthesis of alkaloids lasubine I and myrtine.
View Article and Find Full Text PDFThe asymmetric intramolecular aza-Michael reaction (IMAMR) is a very convenient strategy for the generation of heterocycles bearing nitrogen-substituted stereocenters. Due to the ubiquitous presence of these skeletons in natural products, the IMAMR has found widespread applications in the total synthesis of alkaloids and biologically relevant compounds. The development of asymmetric versions of the IMAMR are quite recent, most of them reported in this century.
View Article and Find Full Text PDFA triple-tandem protocol for the synthesis of the pyrrolizidinone skeleton has been devised. It involves a cross metathesis-intramolecular aza-Michael reaction-intramolecular Michael addition tandem sequence, starting from -pentenyl-4-oxo-2-alkenamides and conjugated ketones. In the presence of two cooperative catalysts, namely the second-generation Hoveyda-Grubbs catalyst and ()-TRIP-derived BINOL phosphoric acid, this multiple-relay catalytic process takes place in good yields and outstanding levels of diastero- and enantioselectivity with the simultaneous generation of three contiguous stereocenters.
View Article and Find Full Text PDFAn organocatalytic desymmetrizing intramolecular aza-Michael reaction with vinyl sulfonamides as nucleophilic nitrogen source has been devised for the synthesis of a new family of 2,5,5-trisubstituted piperidines bearing a quaternary sterocenter. The process takes place with excellent levels of enantioselectivity and moderate to good diastereoselectivity. The vinyl sulfonamide moiety can be removed by means of an ozonolysis reaction.
View Article and Find Full Text PDFAn organocatalytic enantioselective intramolecular aza-Michael reaction has been described for the first time in a desymmetrization process employing substrates different from cyclohexadienones. By using 9-amino-9-deoxy-epi-hydroquinine as the catalyst and trifluoroacetic acid as a co-catalyst, a series of enantiomerically enriched 2,5-and 2,6-disubstituted piperidines have been obtained in good yields and with moderate diastereoselectivity. Depending on the catalyst/co-catalyst loading ratio, either the major or the minor diastereoisomer of the final piperidine products was achieved with high levels of enantioselectivity.
View Article and Find Full Text PDFThe intramolecular 1,3-dipolar cycloaddition of ortho-substituted 1,1,1-trifluoromethylstyrene-derived nitrones is described. Tricyclic fused isoxazolidines were obtained as major or exclusive products, in contrast to the case for nonfluorinated substrates, which rendered the bridged derivatives. This change in the regioselectivity was attributed to the electronic and, particularly, steric requirements of the trifluoromethyl group in comparison to the methyl group.
View Article and Find Full Text PDF