Recent advances in deep learning and Vision-Language Models (VLM) have enabled efficient transfer to downstream tasks even when limited labelled training data is available, as well as for text to be directly compared to image content. These properties of VLMs enable new opportunities for the annotation and analysis of images. We test the potential of VLMs for landscape scenicness prediction, i.
View Article and Find Full Text PDFAfrican forest are increasingly in decline as a result of land-use conversion due to human activities. However, a consistent and detailed characterization and mapping of land-use change that results in forest loss is not available at the spatial-temporal resolution and thematic levels suitable for decision-making at the local and regional scales; so far they have only been provided on coarser scales and restricted to humid forests. Here we present the first high-resolution (5 m) and continental-scale mapping of land use following deforestation in Africa, which covers an estimated 13.
View Article and Find Full Text PDFNeuroblastoma is the most common extracranial solid tumor in infants, arising from developmentally stalled neural crest-derived cells. Driving tumor differentiation is a promising therapeutic approach for this devastating disease. Here, we show that the CDK4/6 inhibitor palbociclib not only inhibits proliferation but induces extensive neuronal differentiation of adrenergic neuroblastoma cells.
View Article and Find Full Text PDFSpaceflight is associated with reduced antigravitational muscle activity, which results in trunk muscle atrophy and may contribute to post-flight postural and spinal instability. Exercise in artificial gravity (AG) performed short-arm human centrifugation (SAHC) is a promising multi-organ countermeasure, especially to mitigate microgravity-induced postural muscle atrophy. Here, we compared trunk muscular activity (mm.
View Article and Find Full Text PDFMed Clin (Engl Ed)
September 2022
Background: The pro-neural transcription factor ASCL1 is a master regulator of neurogenesis and a key factor necessary for the reprogramming of permissive cell types to neurons. Endogenously, ASCL1 expression is often associated with neuroblast stem-ness. Moreover, ASCL1-mediated reprogramming of fibroblasts to differentiated neurons is commonly achieved using artificially high levels of ASCL1 protein, where ASCL1 acts as an "on-target" pioneer factor.
View Article and Find Full Text PDFIntroduction: Several studies have analyzed the influence of meteorological and geographical factors on the incidence of COVID-19. Seasonality could be important in the transmission of SARS-CoV-2. This study aims to evaluate the geographical pattern of COVID-19 in Spain and its relationship with different meteorological variables.
View Article and Find Full Text PDFPeoples' recreation and well-being are closely related to their aesthetic enjoyment of the landscape. Ecosystem service (ES) assessments record the aesthetic contributions of landscapes to peoples' well-being in support of sustainable policy goals. However, the survey methods available to measure these contributions restrict modelling at large scales.
View Article and Find Full Text PDFPediatric cancers often resemble trapped developmental intermediate states that fail to engage the normal differentiation program, typified by high-risk neuroblastoma arising from the developing sympathetic nervous system. Neuroblastoma cells resemble arrested neuroblasts trapped by a stable but aberrant epigenetic program controlled by sustained expression of a core transcriptional circuit of developmental regulators in conjunction with elevated MYCN or MYC (). The transcription factor ASCL1 is a key master regulator in neuroblastoma and has oncogenic and tumor-suppressive activities in several other tumor types.
View Article and Find Full Text PDFObjective: to develop a protocol of recommendations for facing dissemination of COVID-19 in Brazilian Nursing Homes.
Method: a study of experts' recommendations using a structured form applied through the Delphi Technique, obtaining 100% agreement among professionals after four rounds of analysis. The population comprised six nurses members of the Scientific Department of Gerontological Nursing of the Brazilian Association of Nursing (Associação Brasileira de Enfermagem).
This paper presents a radiofrequency (RF) energy harvesting system based on an ultrawideband Archimedean spiral antenna and a half-wave Cockcroft-Walton multiplier circuit. The antenna was proved to operate from 350 MHz to 16 GHz with an outstanding performance. With its use, radio spectrum measurements were carried out at the Telecommunication Engineering School (Universidad Politécnica de Madrid) to determine the power level of the ambient signals in two different scenarios: indoors and outdoors.
View Article and Find Full Text PDFArq Neuropsiquiatr
November 2018
Objective: The study reviewed the histology of cases of grade I meningiomas with spontaneous necrosis, grade I without necrosis and grade II meningiomas, to evaluate the histological and immunohistochemical factors of the patients' prognosis, while correlating the clinicopathological features with the clinical follow-up of the patients.
Methods: A review of 47 cases from the Department of Pathology of UNIFESP was performed and the samples were submitted to immunohistochemical examination with the p53 protein, Ki-67 cell proliferation factor and progesterone receptor markers.
Results: A greater expression was found in the progression of several degrees of aggressiveness for p53 and Ki-67, and a higher frequency of progesterone receptors in the lower degrees.
The regulatory effect auxin has on its own transport is critical in numerous self-organizing plant patterning processes. However, our understanding of the molecular mechanisms linking auxin signal transduction and auxin transport is still fragmentary, and important regulatory genes remain to be identified. To track a key link between auxin signaling and auxin transport in development, we established an Arabidopsis thaliana genetic background in which fundamental patterning processes in both shoot and root were essentially abolished and the expression of PIN FORMED (PIN) auxin efflux facilitators was dramatically reduced.
View Article and Find Full Text PDFThe theory of compressed sensing (CS) shows that signals can be acquired at sub-Nyquist rates if they are sufficiently sparse or compressible. Since many images bear this property, several acquisition models have been proposed for optical CS. An interesting approach is random convolution (RC).
View Article and Find Full Text PDFA quantum simulator of [Formula: see text] lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well.
View Article and Find Full Text PDFFast inhibitory glycinergic transmission occurs in spinal cord, brainstem, and retina to modulate the processing of motor and sensory information. After synaptic vesicle fusion, glycine is recovered back to the presynaptic terminal by the neuronal glycine transporter 2 (GlyT2) to maintain quantal glycine content in synaptic vesicles. The loss of presynaptic GlyT2 drastically impairs the refilling of glycinergic synaptic vesicles and severely disrupts neurotransmission.
View Article and Find Full Text PDFIn vitro regeneration of complete organisms from diverse cell types is a spectacular property of plant cells. Despite the great importance of plant regeneration for plant breeding and biotechnology, its molecular basis is still largely unclear and many important crop plants have remained recalcitrant to regeneration. Hormone-exposure protocols to trigger the de novo formation of either roots or shoots from callus tissue demonstrate the importance of auxin and cytokinin signaling pathways, and genetic differences in these pathways may contribute to the highly divergent responsiveness of plant species to regeneration protocols.
View Article and Find Full Text PDFGeneralized Dicke models can be implemented in hybrid quantum systems built from ensembles of nitrogen-vacancy (NV) centers in diamond coupled to superconducting microwave cavities. By engineering cavity assisted Raman transitions between two spin states of the NV defect, a fully tunable model for collective light-matter interactions in the ultrastrong coupling limit can be obtained. Our analysis of the resulting nonequilibrium phases for a single cavity and for coupled cavity arrays shows that different superradiant phase transitions can be observed using existing experimental technologies, even in the presence of large inhomogeneous broadening of the spin ensemble.
View Article and Find Full Text PDFSelf-regulatory patterning mechanisms capable of generating biologically meaningful, yet unpredictable cellular patterns offer unique opportunities for obtaining mathematical descriptions of underlying patterning systems properties. The networks of higher-order veins in leaf primordia constitute such a self-regulatory system. During the formation of higher-order veins, vascular precursors are selected from a homogenous field of subepidermal cells in unpredictable positions to eventually connect in complex cellular networks.
View Article and Find Full Text PDFWe show how engineered classical noise can be used to generate constrained Hamiltonian dynamics in atomic quantum simulators of many-body systems, taking advantage of the continuous Zeno effect. After discussing the general theoretical framework, we focus on applications in the context of lattice gauge theories, where imposing exotic, quasilocal constraints is usually challenging. We demonstrate the effectiveness of the scheme for both Abelian and non-Abelian gauge theories, and discuss how engineering dissipative constraints substitutes complicated, nonlocal interaction patterns by global coupling to laser fields.
View Article and Find Full Text PDFPhys Rev Lett
September 2013
We describe a superconducting-circuit lattice design for the implementation and simulation of dynamical lattice gauge theories. We illustrate our proposal by analyzing a one-dimensional U(1) quantum-link model, where superconducting qubits play the role of matter fields on the lattice sites and the gauge fields are represented by two coupled microwave resonators on each link between neighboring sites. A detailed analysis of a minimal experimental protocol for probing the physics related to string breaking effects shows that, despite the presence of decoherence in these systems, distinctive phenomena from condensed-matter and high-energy physics can be visualized with state-of-the-art technology in small superconducting-circuit arrays.
View Article and Find Full Text PDFBackground: Virtual microscopy includes digitisation of histology slides and the use of computer technologies for complex investigation of diseases such as cancer. However, automated image analysis, or website publishing of such digital images, is hampered by their large file sizes.
Results: We have developed two Java based open source tools: Snapshot Creator and NDPI-Splitter.
Combinatorial interactions of AUXIN RESPONSE FACTORs (ARFs) and auxin/indole acetic acid (Aux/IAA) proteins through their common domains III and IV regulate auxin responses, but insight into the functions of individual proteins is still limited. As a new tool to explore this regulatory network, we generated a gain-of-function ARF genotype by eliminating domains III and IV from the functionally well-characterized ARF MONOPTEROS(MP)/ARF5. This truncated version of MP, termed MPΔ, conferred complementing MP activity, but also displayed a number of semi-dominant traits affecting auxin signaling and organ patterning.
View Article and Find Full Text PDF