Publications by authors named "Marcos D Munoz"

Oxysterols are metabolites of cholesterol that regulate cholesterol homeostasis. Among these, the most abundant oxysterol is 27-hydroxycholesterol (27HC), which can cross the blood-brain barrier. Because 27HC functions as an endogenous selective estrogen receptor modulator, we hypothesize that 27HC binds to the estrogen receptor α (ERα) in the brain to regulate energy balance.

View Article and Find Full Text PDF

Long-term ad libitum dietary restrictions, such as low-protein diets (LPDs), improve metabolic health and extend the life span of mice and humans. However, most studies conducted thus far have focused on the preventive effects of LPDs on metabolic syndromes. To test the therapeutic potential of LPD, we treated a lipodystrophy mouse model IR (adipose-specific insulin receptor knockout) in this study.

View Article and Find Full Text PDF

Secreted isoform of endoplasmic reticulum membrane complex subunit 10 (scEMC10) is a poorly characterized secreted protein of largely unknown physiological function. Here we demonstrate that scEMC10 is upregulated in people with obesity and is positively associated with insulin resistance. Consistent with a causal role for scEMC10 in obesity, Emc10 mice are resistant to diet-induced obesity due to an increase in energy expenditure, while scEMC10 overexpression decreases energy expenditure, thus promoting obesity in mouse.

View Article and Find Full Text PDF

The nitrone spin trap 5,5‑dimethyl‑1‑pyrroline N‑oxide (DMPO) dampens endotoxin-induced and TLR4-driven priming of macrophages, but the mechanism remains unknown. The available information suggests a direct binding of DMPO to the TIR domain, which is shared between TLRs. However, TLR2-TIR domain is the only TLR that have been crystallized.

View Article and Find Full Text PDF

Increased chicken-derived fat and fructose consumption in the human diet is paralleled by an increasing prevalence of obesity and metabolic syndrome (MS). Herein, we aimed at developing and characterizing a mouse model of diet-induced obesity (DIO) resembling most of the key features of the human MS. To accomplish this, we fed male C57BL/6J mice for 4, 8, 12, and 16 weeks with either a low-fat diet (LFD) or a high-chicken-fat diet (HFD) and tap water with or without 10% fructose (F).

View Article and Find Full Text PDF

A number of post-translational oxidative modifications of the enzyme "cell-redox sensor" glyceraldehyde-3-phosphate dehydrogenase (GAPDH) have been reported. These modifications affect GAPDH structure, function, and cell fate; however no free-radical mechanisms have been reported in these processes. Herein we used the nitrone 5,5-dimethyl-1-pyrroline -oxide (DMPO)-based spin trapping techniques to examine a novel free radical mechanism that causes GAPDH inactivation and aggregation in RAW264.

View Article and Find Full Text PDF

Background: Immuno-spin trapping (IST) is based on the reaction of a spin trap with a free radical to form a stable nitrone adduct, followed by the use of antibodies, rather than traditional electron paramagnetic resonance spectroscopy, to detect the nitrone adduct. IST has been successfully applied to mechanistic in vitro studies, and recently, macromolecule-centered radicals have been detected in models of drug-induced agranulocytosis, hepatotoxicity, cardiotoxicity, and ischemia/reperfusion, as well as in models of neurological, metabolic and immunological diseases.

Scope Of The Review: To critically evaluate advances, challenges, and pitfalls as well as the scientific opportunities of IST as applied to the study of protein-centered free radicals generated in stressed organelles, cells, tissues and animal models of disease and exposure.

View Article and Find Full Text PDF