In plant mitochondria, nicotinamide adenine dinucleotide-malic enzyme (NAD-ME) has a housekeeping function in malate respiration. In different plant lineages, NAD-ME was independently co-opted in C4 photosynthesis. In the C4 Cleome species, Gynandropsis gynandra and Cleome angustifolia, all NAD-ME genes (NAD-MEα, NAD-MEβ1, and NAD-MEβ2) were affected by C4 evolution and are expressed at higher levels than their orthologs in the C3 species Tarenaya hassleriana.
View Article and Find Full Text PDFIn different lineages of C plants, the release of CO by decarboxylation of a C acid near rubisco is catalyzed by NADP-malic enzyme (ME) or NAD-ME, and the facultative use of phosphoenolpyruvate carboxykinase. The co-option of gene lineages during the evolution of C-NADP-ME has been thoroughly investigated, whereas that of C-NAD-ME has received less attention. In this work, we aimed at elucidating the mechanism of recruitment of for its function in the C pathway by focusing on the eudicot family Cleomaceae.
View Article and Find Full Text PDFMalic enzyme (ME) comprises a family of proteins with multiple isoforms located in different compartments of eukaryotic cells. In plants, cytosolic and plastidic enzymes share several characteristics such as NADP specificity (NADP-ME), oxaloacetate decarboxylase (OAD) activity, and homo-oligomeric assembly. However, mitochondrial counterparts are NAD-dependent proteins (mNAD-ME) lacking OAD activity, which can be structured as homo- and hetero-oligomers of two different subunits.
View Article and Find Full Text PDFArabidopsis thaliana possesses two fumarase genes (FUM), AtFUM1 (At2g47510) encoding for the mitochondrial Krebs cycle-associated enzyme and AtFUM2 (At5g50950) for the cytosolic isoform required for fumarate massive accumulation. Here, the comprehensive biochemical studies of AtFUM1 and AtFUM2 shows that they are active enzymes with similar kinetic parameters but differential regulation. For both enzymes, fumarate hydratase (FH) activity is favored over the malate dehydratase (MD) activity; however, MD is the most regulated activity with several allosteric activators.
View Article and Find Full Text PDFNAD(P)-malic enzyme (NAD(P)-ME) catalyzes the reversible oxidative decarboxylation of malate to pyruvate, CO , and NAD(P)H and is present as a multigene family in Arabidopsis thaliana. The carboxylation reaction catalyzed by purified recombinant Arabidopsis NADP-ME proteins is faster than those reported for other animal or plant isoforms. In contrast, no carboxylation activity could be detected in vitro for the NAD-dependent counterparts.
View Article and Find Full Text PDFArabidopsis thaliana has four NADP-dependent malic enzymes (NADP-ME 1-4) for reversible malate decarboxylation, with NADP-ME2 being the only cytosolic isoform ubiquitously expressed and responsible for most of the total activity. In this work, we further investigated its physiological function by characterizing Arabidopsis plants over-expressing NADP-ME2 constitutively. In comparison to wild type, these plants exhibited reduced rosette and root sizes, delayed flowering time and increased sensitivity to mannitol and polyethylene glycol.
View Article and Find Full Text PDFPlant mitochondria can use L-malate and fumarate, which accumulate in large levels, as respiratory substrates. In part, this property is due to the presence of NAD-dependent malic enzymes (NAD-ME) with particular biochemical characteristics. Arabidopsis NAD-ME1 exhibits a non-hyperbolic behavior for the substrate L-malate, and its activity is strongly stimulated by fumarate.
View Article and Find Full Text PDFC4 photosynthesis enables the capture of atmospheric CO2 and its concentration at the site of RuBisCO, thus counteracting the negative effects of low atmospheric levels of CO2 and high atmospheric levels of O2 (21 %) on photosynthesis. The evolution of this complex syndrome was a multistep process. It did not occur by simply recruiting pre-exiting components of the pathway from C3 ancestors which were already optimized for C4 function.
View Article and Find Full Text PDFFusarium verticillioides causes ear rot and grain mycotoxins in maize (Zea mays L.), which are harmful to human and animal health. Breeding and growing less susceptible plant genotypes is one alternative to reduce these detrimental effects.
View Article and Find Full Text PDFArabidopsis mitochondria contain two NAD(+)-malic enzymes, NAD-ME1 and NAD-ME2. These proteins have similar affinity for their substrates but display opposite regulation by fumarate, which strongly stimulates NAD-ME1 but inhibits NAD-ME2 activity. Here, the interaction of NAD-ME1 and -2 with fumarate was investigated by kinetic approaches, urea denaturation assays and intrinsic fluorescence quenching, in the absence and presence of NAD(+).
View Article and Find Full Text PDFThe Arabidopsis thaliana genome contains two genes encoding NAD-MEs [NAD-dependent malic enzymes; NAD-ME1 (TAIR accession number At4G13560) and NAD-ME2 (TAIR accession number At4G00570)]. The encoded proteins are localized to mitochondria and assemble as homo- and hetero- dimers in vitro and in vivo. In the present work, the kinetic mechanisms of NAD-ME1 and -ME2 homodimers and NAD-MEH (NAD-ME heterodimer) were studied as an approach to understand the contribution of these enzymes to plant physiology.
View Article and Find Full Text PDFThe Arabidopsis thaliana genome contains two genes encoding the mitochondrial NAD-malic enzyme (NAD-ME), NAD-ME1 (At2g13560) and NAD-ME2 (At4g00570). The characterization of recombinant NAD-ME1 and -2 indicated that both enzymes assemble as active homodimers; however, a heterodimeric enzyme (NAD-MEH) can also be detected by electrophoretic studies. To analyze the metabolic contribution of each enzymatic entity, NAD-MEH was obtained by a co-expression-based recombinant approach, and its kinetic and regulatory properties were analyzed.
View Article and Find Full Text PDFThe Arabidopsis thaliana genome contains four NADP-malic enzymes genes (NADP-ME1-4). NADP-ME4 is localized to plastids whereas the other isoforms are cytosolic. NADP-ME2 and 4 are constitutively expressed, while NADP-ME1 is restricted to secondary roots and NADP-ME3 to trichomes and pollen.
View Article and Find Full Text PDFAlthough the nonphotosynthetic NAD-malic enzyme (NAD-ME) was assumed to play a central role in the metabolite flux through the tricarboxylic acid cycle, the knowledge on this enzyme is still limited. Here, we report on the identification and characterization of two genes encoding mitochondrial NAD-MEs from Arabidopsis (Arabidopsis thaliana), AtNAD-ME1 and AtNAD-ME2. The encoded proteins can be grouped into the two clades found in the plant NAD-ME phylogenetic tree.
View Article and Find Full Text PDFThe Arabidopsis (Arabidopsis thaliana) genome contains four genes encoding putative NADP-malic enzymes (MEs; AtNADP-ME1-ME4). NADP-ME4 is localized to plastids, whereas the other three isoforms do not possess any predicted organellar targeting sequence and are therefore expected to be cytosolic. The plant NADP-MEs can be classified into four groups: groups I and II comprising cytosolic and plastidic isoforms from dicots, respectively; group III containing isoforms from monocots; and group IV composed of both monocots and dicots, including AtNADP-ME1.
View Article and Find Full Text PDF