Methane conversion to valuable chemicals is a highly challenging and desirable reaction. Photocatalysis is a clean pathway to drive this chemical reaction, avoiding the high temperature and pressure of the syngas process. Titanium dioxide, being the most used photocatalyst, presents challenges in controlling the oxidation process, which is believed to depend on the metal sites on its surface that function as heterojunctions.
View Article and Find Full Text PDFGreen hydrogen is the key to the chemical industry achieving net zero emissions. The chemical industry is responsible for almost 2% of all CO emissions, with half of it coming from the production of simple commodity chemicals, such as NH, HO, methanol, and aniline. Despite electrolysis driven by renewable power sources emerging as the most promising way to supply all the green hydrogen required in the production chain of these chemicals, in this review, it is worth noting that the photocatalytic route may be underestimated and can hold a bright future for this topic.
View Article and Find Full Text PDFSingle-atom catalysis is a field of paramount importance in contemporary science due to its exceptional ability to combine the domains of homogeneous and heterogeneous catalysis. Iron and manganese metalloenzymes are known to be effective in C─H oxidation reactions in nature, inspiring scientists to mimic their active sites in artificial catalytic systems. Herein, a simple and versatile cation exchange method is successfully employed to stabilize low-cost iron and manganese single-atoms in poly(heptazine imides) (PHI).
View Article and Find Full Text PDFRecently, the missing link between homogeneous and heterogeneous catalysis has been found and it was named single-atom catalysis (SAC). However, the SAC field still faces important challenges, one of which is controlling the bonding/coordination between the single atoms and the support in order to compensate for the increase in surface energy when the particle size is reduced due to atomic dispersion. Excellent candidates to meet this requirement are carbon nitride (CN)-based materials.
View Article and Find Full Text PDFPhotocatalysis provides a sustainable pathway to produce the consumer chemical HO from atmospheric O via an oxygen reduction reaction (ORR). Such an alternative is attractive to replace the cumbersome traditional anthraquinone method for HO synthesis on a large scale. Carbon nitrides have shown very interesting results as heterogeneous photocatalysts in ORR because their covalent two-dimensional (2D) structure is believed to increase selectivity toward the two-electron process.
View Article and Find Full Text PDFHere we report a photocatalytic system based on crystalline carbon nitrides (PHI) and highly dispersed transition metals (Fe, Co and Cu) for controlled methane photooxidation to methanol under mild conditions. The Cu-PHI catalyst showed a remarkable methanol production (2900 μmol g) in 4 hours, with a turnover number of 51 moles of oxygenated liquid product per mole of Cu. To date, this result is the highest value for methane oxidation under mild conditions (1 bar, 25 °C).
View Article and Find Full Text PDFHerein we demonstrate that adding single atoms of selected transition metals to graphitic carbon nitrides allows the tailoring of the electronic and chemical properties of these 2D nanomaterials, directly impacting their usage in photocatalysis. These single-atom photocatalysts were successfully prepared with Ni, Pt or Ru by cation exchange, using poly(heptazine imides) (PHI) as the 2D layered platform. Differences in photocatalytic performance for these metals were assessed using rhodamine-B (RhB) and methyl orange (MO) as model compounds for degradation.
View Article and Find Full Text PDF