The synthesis of silver nanoparticles (AgNPs) is usually based on expensive methods that use or generate chemicals that can negatively impact the environment. Our study presents a simple one-step synthesis process for obtaining AgNP using an aqueous extract of Amazonian fruit açai (Euterpe oleracea Mart.) as the reducing and stabilizing agents.
View Article and Find Full Text PDFChitosan nanocapsules containing polyunsaturated fatty acid (PUFA) concentrates from tuna oil, with EPA+DHA contents around 57% (w/w), were developed by emulsification process, using different chitosan concentration (1.0%, 1.5%, 2.
View Article and Find Full Text PDFThe pandemic of COVID-19 (SARS-CoV-2 disease) has been causing unprecedented health and economic impacts, alerting the world to the importance of basic sanitation and existing social inequalities. The risk of the spread and appearance of new diseases highlights the need for the removal of these pathogens through efficient techniques and materials. This study aimed to develop a polyurethane (PU) biofoam filled with dregs waste (leftover from the pulp and paper industry) for removal SARS-CoV-2 from the water.
View Article and Find Full Text PDFArsenic (As) is a ubiquitous contaminant in the environment and it is known to induce oxidative stress in aquatic organisms. In an attempt to remove As from water, some studies have suggested the titanium dioxide nanomaterial (nTiO) as a promising alternative. However, it has been observed that nTiO can induce toxicity alone or in combination with metals, and this toxicity is dependent on its crystalline form of nanomaterial (mainly rutile as nTiOR and anatase as nTiOA, respectively).
View Article and Find Full Text PDFIn this work, lovegrass (Cpa), an abundant grass of the Poaceae family, was employed as feedstock for the production of activated carbon in a conventional furnace using ZnCl as a chemical activator. The prepared material (Cpa-AC) was characterized by pH of the point of zero charges (pH), Boehm's titration method, CHN/O elemental analysis, ATR-FTIR, N adsorption/desorption curves, and SEM. This carbon material was used for adsorption of acetylsalicylic acid (ASA) and sodium diclofenac (DFC).
View Article and Find Full Text PDFRecently, it has been suggested that the mitochondrial oligomycin A-sensitive F0-ATPase subunit is an uncoupling channel linked to apoptotic cell death, and as such, the toxicological inhibition of mitochondrial F0-ATP hydrolase can be an interesting mitotoxicity-based therapy under pathological conditions. In addition, carbon nanotubes (CNTs) have been shown to offer higher selectivity like mitotoxic-targeting nanoparticles. In this work, linear and nonlinear classification algorithms on structure-toxicity relationships with artificial neural network (ANN) models were set up using the fractal dimensions calculated from CNTs as a source of supramolecular chemical information.
View Article and Find Full Text PDFAquat Toxicol
December 2018
Although some studies have showed the effects of different crystalline structures of nTiO (anatase and rutile) and their applicability in several fields, few studies has analyzed the effect of coexposure with other environmental contaminants such as copper. Thus, the objective of this study was to evaluate if the coexposure to nTiO (nominal concentration of 1 mg/L; anatase or rutile) can increase the incorporation and toxic effect induced by Cu (nominal concentration of 56 μg/L) in different tissues of Linmoperna fortunei after 120 h of exposure. Our results showed that the coexposure increased the accumulation of Cu in the gills and adductor muscle independently of the crystalline form and can positively or negatively modulate the antioxidant system, depending on the tissue analyzed.
View Article and Find Full Text PDFEragrostis plana Nees leaves, abundant lignocellulosic biomass, was used as carbon source for preparation of activated carbon, by using microwave-assisted pyrolysis and chemical activation. The novel activated carbon (MWEPN) was characterised by FTIR, CHN elemental analysis, Boehm's titration method, TGA, SEM, N adsorption/desorption curves and pH of the point of zero charge (pH). Afterwards, the adsorbent was successfully employed for adsorption of the two emerging contaminants (caffeine and 2-nitrophenol).
View Article and Find Full Text PDFThe production and use of nanoparticles, as titanium dioxide (nanoTiO) is growing exponentially in the last years and their release into aquatic environment seem be inevitable. Once into environment, this nanomaterial can interact with other contaminant, as arsenic, and to exert toxic effect in living organisms. So, the objective of present study was to evaluate if the co-exposure to nanoTiO (1mg/L) can alter the As effect (nominal concentration of 50μg/L) in the estuarine polychaeta Laeonereis acuta after 48h of exposure.
View Article and Find Full Text PDFThe acute toxicity of titanium dioxide nanoparticles (nTiO2) that occur concomitantly in the aquatic environment with other contaminants such as arsenic (As) is little known in crustaceans. The objective of the present study is to evaluate whether coexposure to nTiO2 can influence the accumulation, metabolism, and oxidative stress parameters induced by arsenic exposure in the gills and hepatopancreas of the shrimp Litopenaeus vannamei. Organisms were exposed by dissolving chemicals in seawater (salinity = 30) at nominal concentrations of 10 μg/L nTiO2 or As(III), dosed alone and in combination.
View Article and Find Full Text PDFHydrogen reduction of cationic or neutral Ir(i) compounds, namely [Ir(COD)(2)]BF(4) and [Ir(COD)Cl](2)respectively. in the ionic liquid (IL) 1-alkyl-3-methylimidazolium tetrafluoroborate affords either irregularly sized spherical (from 1.9 +/- 0.
View Article and Find Full Text PDFTransition metal-containing membrane films of 10, 20, and 40 μm thickness were obtained by the combination of irregularly shaped nanoparticles with monomodal size distributions of 4.8 ± 1.1 nm (Rh(0)) and 3.
View Article and Find Full Text PDFRh(0) nanoparticles (ca. 4 nm) dispersed in an ionic liquid (1-n-butyl-3-methylimidazolium tetrafluoroborate) were immobilized within a silica network, prepared by the sol-gel method. The effect of the sol-gel catalyst (acid or base) on the encapsulated ionic liquid and Rh(0) content, on the silica morphology and texture, and on the catalyst alkene hydrogenation activity was investigated.
View Article and Find Full Text PDFA surface-enhanced Raman spectroscopy (SERS) study of imidazolium ionic liquid stabilized gold(0) nanoparticles (GNPs) furnished previously unknown knowledge about the coordination and stabilization mode of the imidazolium cation. GNPs were prepared by hydrazine reduction of a chloroauric acid solution in 1-triethylene glycol monomethyl ether-3-methylimidazolium methanesulfonate 2 as ether-functionalized room-temperature ionic liquid (RTIL). UV-vis spectroscopy showed the presence of GNP aggregates as absorptions extended to the NIR region.
View Article and Find Full Text PDFStable Pd(0) and Rh(0) nanoparticles with small and narrow size distribution can be prepared from relative large and agglomerated transition-metal particles dispersed in 1-n-butyl-3methylimidazolium hexafluorophosphate ionic liquid by simple laser irradiation. The laser irradiation is a complementary method for the generation of stable metal colloids in ionic liquids and also for the regeneration of small-size nanoparticles that may result from their agglomeration after different applications.
View Article and Find Full Text PDF