Cystic Fibrosis (CF) is caused by mutations in the CFTR gene, of which over 2000 have been reported to date. Mutations have yet to be analyzed in aggregate to assess their distribution across the tertiary structure of the CFTR protein, an approach that could provide valuable insights into the structure-function relationship of CFTR. In addition, the binding site of Class I correctors (VX-809, VX-661, and C18) is not well understood.
View Article and Find Full Text PDFThe investigational compound BIA 10-2474, designed as a long-acting and reversible inhibitor of fatty acid amide hydrolase for the treatment of neuropathic pain, led to the death of one participant and hospitalization of five others due to intracranial hemorrhage in a Phase I clinical trial. Putative off-target activities of BIA 10-2474 have been suggested to be major contributing factors to the observed neurotoxicity in humans, motivating our study's proteome-wide screening approach to investigate its polypharmacology. Accordingly, we performed an in silico screen against 80,923 protein structures reported in the Protein Data Bank.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2016
The CRISPR/Cas9 nuclease is commonly used to make gene knockouts. The blunt DNA ends generated by cleavage can be efficiently ligated by the classical nonhomologous end-joining repair pathway (c-NHEJ), regenerating the target site. This repair creates a cycle of cleavage, ligation, and target site regeneration that persists until sufficient modification of the DNA break by alternative NHEJ prevents further Cas9 cutting, generating a heterogeneous population of insertions and deletions typical of gene knockouts.
View Article and Find Full Text PDF