Publications by authors named "Marcocci Maria Elena"

Herpes simplex virus type-1 (HSV-1) and John Cunningham polyomavirus (JCPyV) are widely distributed DNA viruses causing mainly asymptomatic infection, but also mild to very severe diseases, especially when these viruses reach the brain. Some drugs have been developed to inhibit HSV-1 replication in host cells, but their prolonged use may induce resistance phenomena. In contrast, to date, there is no cure for JCPyV.

View Article and Find Full Text PDF

The increasing resistance to conventional antifungal drugs is a widespread concern, and a search for new compounds, active against different species of fungi, is demanded. Antimicrobial peptides (AMPs) hold promises in this context. Here we investigated the activity of the frog skin AMP Temporin G (TG) against a panel of fungal strains, by following the Clinical and Laboratory Standards Institute protocols.

View Article and Find Full Text PDF

Herpes simplex virus-1 (HSV-1) is a ubiquitous DNA virus able to establish a life-long latent infection in host sensory ganglia. Following periodic reactivations, the neovirions usually target the site of primary infection causing recurrent diseases in susceptible individuals. However, reactivated HSV-1 may also reach the brain resulting in severe herpetic encephalitis or in asymptomatic infections.

View Article and Find Full Text PDF

The COVID-19 pandemic has evidenced the urgent need for the discovery of broad-spectrum antiviral therapies that could be deployed in the case of future emergence of novel viral threats, as well as to back up current therapeutic options in the case of drug resistance development. Most current antivirals are directed to inhibit specific viruses since these therapeutic molecules are designed to act on a specific viral target with the objective of interfering with a precise step in the replication cycle. Therefore, antimicrobial peptides (AMPs) have been identified as promising antiviral agents that could help to overcome this limitation and provide compounds able to act on more than a single viral family.

View Article and Find Full Text PDF

Herpes simplex virus 1 (HSV-1) is a widespread neurotropic virus establishing a life-long latent infection in neurons with periodic reactivations. Recent studies linked HSV-1 to neurodegenerative processes related to age-related disorders such as Alzheimer's disease. Here, we explored whether recurrent HSV-1 infection might accelerate aging in neurons, focusing on peculiar marks of aged cells, such as the increase in histone H4 lysine (K) 16 acetylation (ac) (H4K16ac); the decrease of H3K56ac, and the modified expression of Sin3/HDAC1 and HIRA proteins.

View Article and Find Full Text PDF

Astrocytes provide metabolic support for neurons and modulate their functions by releasing a plethora of neuroactive molecules diffusing to neighboring cells. Here we report that astrocytes also play a role in cortical neurons' vulnerability to Herpes simplex virus type-1 (HSV-1) infection through the release of extracellular ATP. We found that the interaction of HSV-1 with heparan sulfate proteoglycans expressed on the plasma membrane of astrocytes triggered phospholipase C-mediated IP -dependent intracellular Ca transients causing extracellular release of ATP.

View Article and Find Full Text PDF

Compelling evidence supports the role of oxidative stress in Alzheimer's disease (AD) pathophysiology. Interestingly, Herpes simplex virus-1 (HSV-1), a neurotropic virus that establishes a lifelong latent infection in the trigeminal ganglion followed by periodic reactivations, has been reportedly linked both to AD and to oxidative stress conditions. Herein, we analyzed, through biochemical and redox proteomic approaches, the mouse model of recurrent HSV-1 infection we previously set up, to investigate whether multiple virus reactivations induced oxidative stress in the mouse brain and affected protein function and related intracellular pathways.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19), first reported in Wuhan, the capital of Hubei, China, has been associated to a novel coronavirus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In March 2020, the World Health Organization declared the SARS-CoV-2 infection a global pandemic. Soon after, the number of cases soared dramatically, spreading across China and worldwide.

View Article and Find Full Text PDF

Viruses use cell machinery to replicate their genome and produce viral proteins. For this reason, several intracellular factors, including the redox state, might directly or indirectly affect the progression and outcome of viral infection. In physiological conditions, the redox balance between oxidant and antioxidant species is maintained by enzymatic and non-enzymatic systems, and it finely regulates several cell functions.

View Article and Find Full Text PDF

In the last decade essential oils have attracted scientists with a constant increase rate of more than 7% as witnessed by almost 5000 articles. Among the prominent studies essential oils are investigated as antibacterial agents alone or in combination with known drugs. Minor studies involved essential oil inspection as potential anticancer and antiviral natural remedies.

View Article and Find Full Text PDF

Herpes simplex virus-1 (HSV-1) establishes latency preferentially in sensory neurons of peripheral ganglia. A variety of stresses can induce recurrent reactivations of the virus, which spreads and then actively replicates to the site of primary infection (usually the lips or eyes). Viral particles produced following reactivation can also reach the brain, causing a rare but severe form of diffuse acute infection, namely herpes simplex encephalitis.

View Article and Find Full Text PDF

We previously reported that Herpes simplex virus type-1 (HSV-1) infection of cultured neurons triggered intracellular accumulation of amyloid-β protein (Aβ) markedly impinging on neuronal functions. Here, we demonstrated that HSV-1 affects in vitro and in vivo adult hippocampal neurogenesis by reducing neural stem/progenitor cell (NSC) proliferation and their neuronal differentiation via intracellular Aβ accumulation. Specifically, cultured NSCs were more permissive for HSV-1 replication than mature neurons and, once infected, they exhibited reduced proliferation (assessed by 5'-bromo-deoxyuridine incorporation, Ki67 immunoreactivity, and Sox2 mRNA expression) and impaired neuronal differentiation in favor of glial phenotype (evaluated by immunoreactivity for the neuronal marker MAP2, the glial marker glial fibrillary astrocyte protein, and the expression of the proneuronal genes Mash1 and NeuroD1).

View Article and Find Full Text PDF

Herpes simplex virus type 1 (HSV-1) is a DNA neurotropic virus, usually establishing latent infections in the trigeminal ganglia followed by periodic reactivations. Although numerous findings suggested potential links between HSV-1 and Alzheimer's disease (AD), a causal relation has not been demonstrated yet. Hence, we set up a model of recurrent HSV-1 infection in mice undergoing repeated cycles of viral reactivation.

View Article and Find Full Text PDF

An imbalance in GSH/GSSG ratio represents a triggering event in pro-inflammatory cytokine production and inflammatory response. However, the molecular mechanism(s) through which GSH regulates macrophage and cell autonomous inflammation remains not deeply understood. Here, we investigated the effects of a derivative of GSH, the N-butanoyl glutathione (GSH-C4), a cell permeable compound, on lipopolisaccharide (LPS)-stimulated murine RAW 264.

View Article and Find Full Text PDF

DR2B and DR2C extracts, obtained by ethanolic maceration of peel from commercially and physiologically ripe aubergine berries, were studied for the antioxidative cytoprotective properties and anti-HSV-1 activity, in line with the evidence that several antioxidants can impair viral replication by maintaining reducing conditions in host cells. The antioxidative cytoprotective effects against tBOOH-induced damage were assessed in Caco2 cells, while antiviral activity was studied in Vero cells; polyphenolic fingerprints were characterized by integrated phytochemical methods. Results highlighted different compositions of the extracts, with chlorogenic acid and delphinidin-3-rutinoside as the major constituents; other peculiar phytochemicals were also identified.

View Article and Find Full Text PDF

Among several strategies used for Herpes simplex virus (HSV) detection in biological specimens, standard plaque assay (SPA) remains the most reliable method to evaluate virus infectivity and quantify viral replication. However, it is a manual procedure, thereby affected by operator subjectivity, and it may be particularly laborious for multiple sample analysis. Here we describe an innovative method to perform the titration of HSV type 1 (HSV-1) in different samples, using the "In-Cell Western" Assay (ICW) from LI-COR, a quantitative immunofluorescence assay that exploits laser-based scanning of near infrared (NIR).

View Article and Find Full Text PDF

Several findings suggest that Herpes simplex virus-1 (HSV-1) infection plays a role in the neurodegenerative processes that characterize Alzheimer's disease (AD), but the underlying mechanisms have yet to be fully elucidated. Here we show that HSV-1 productive infection in cortical neurons causes the accumulation of DNA lesions that include both single (SSBs) and double strand breaks (DSBs), which are reported to be implicated in the neuronal loss observed in neurodegenerative diseases. We demonstrate that HSV-1 downregulates the expression level of Ku80, one of the main components of non-homologous end joining (NHEJ), a major pathway for the repair of DSBs.

View Article and Find Full Text PDF

Aim: Histone deacetylases (HDACs) regulate the life cycle of several viruses. We investigated the ability of different HDAC inhibitors, to interfere with influenza virus A/Puerto Rico/8/34/H1N1 (PR8 virus) replication in Madin-Darby canine kidney and NCI cells.

Results: 3-(5-(3-Fluorophenyl)-3-oxoprop-1-en-1-yl)-1-methyl-1H-pyrrol-2-yl)-N-hydroxyacrylamide (MC1568) inhibited HDAC6/8 activity and PR8 virus replication, with decreased expression of viral proteins and their mRNAs.

View Article and Find Full Text PDF

Increasing evidence suggests that recurrent Herpes Simplex Virus type 1 (HSV-1) infection spreading to the CNS is a risk factor for Alzheimer's Disease (AD) but the underlying mechanisms have not been fully elucidated yet. Here we demonstrate that in cultured mouse cortical neurons HSV-1 induced Ca(2+)-dependent activation of glycogen synthase kinase (GSK)-3. This event was critical for the HSV-1-dependent phosphorylation of amyloid precursor protein (APP) at Thr668 and the following intraneuronal accumulation of amyloid-β protein (Aβ).

View Article and Find Full Text PDF

Several data indicate that neuronal infection with herpes simplex virus type 1 (HSV-1) causes biochemical alterations reminiscent of Alzheimer's disease (AD) phenotype. They include accumulation of amyloid-β (Aβ), which originates from the cleavage of amyloid precursor protein (APP), and hyperphosphorylation of tau protein, which leads to neurofibrillary tangle deposition. HSV-1 infection triggers APP processing and drives the production of several fragments including APP intracellular domain (AICD) that exerts transactivating properties.

View Article and Find Full Text PDF

Influenza virus infections represent a big issue for public health since effective treatments are still lacking. In particular, the emergence of strains resistant to drugs limits the effectiveness of anti-influenza agents. For this reason, many efforts have been dedicated to the identification of new therapeutic strategies aimed at targeting the virus-host cell interactions.

View Article and Find Full Text PDF

Several essential oils exert in vitro activity against bacteria and viruses and, among these latter, herpes simplex virus type 1 (HSV-1) is known to develop resistance to commonly used antiviral agents. Thus, the effects of the essential oil derived from Mentha suaveolens (EOMS) and its active principle piperitenone oxide (PEO) were tested in in vitro experimental model of infection with HSV-1. The 50% inhibitory concentration (IC50) was determined at 5.

View Article and Find Full Text PDF

A growing body of epidemiologic and experimental data point to chronic bacterial and viral infections as possible risk factors for neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Infections of the central nervous system, especially those characterized by a chronic progressive course, may produce multiple damage in infected and neighbouring cells. The activation of inflammatory processes and host immune responses cause chronic damage resulting in alterations of neuronal function and viability, but different pathogens can also directly trigger neurotoxic pathways.

View Article and Find Full Text PDF

Lifelong latent infections of the trigeminal ganglion by the neurotropic herpes simplex virus type 1 (HSV-1) are characterized by periodic reactivation. During these episodes, newly produced virions may also reach the central nervous system (CNS), causing productive but generally asymptomatic infections. Epidemiological and experimental findings suggest that HSV-1 might contribute to the pathogenesis of Alzheimer's disease (AD).

View Article and Find Full Text PDF