Publications by authors named "Marco-Tulio R Gomes"

Endoplasmic reticulum (ER) stress plays a major role in several inflammatory disorders. ER stress induces the unfolded protein response (UPR), a conserved response broadly associated with innate immunity and cell metabolic function in various scenarios. , an intracellular pathogen, triggers the UPR Stimulator of interferon genes (STING), an important regulator of macrophage metabolism during infection.

View Article and Find Full Text PDF

In this study, we provide evidence that galectin-3 (Gal-3) plays an important role in Brucella abortus infection. Our results showed increased Gal-3 expression and secretion in B. abortus infected macrophages and mice.

View Article and Find Full Text PDF

Macrophages metabolic reprogramming in response to microbial insults is a major determinant of pathogen growth or containment. Here, we reveal a distinct mechanism by which stimulator of interferon genes (STING), a cytosolic sensor that regulates innate immune responses, contributes to an inflammatory M1-like macrophage profile upon Brucella abortus infection. This metabolic reprogramming is induced by STING-dependent stabilization of hypoxia-inducible factor-1 alpha (HIF-1α), a global regulator of cellular metabolism and innate immune cell functions.

View Article and Find Full Text PDF

Interleukin-6 (IL-6) is a pleiotropic cytokine promptly produced in response to infections, which contributes to host defense through the stimulation of acute phase immune responses. is an intracellular bacterium that causes chronic disease in humans and domestic animals and triggers a robust immune response, characterized by the production of inflammatory cytokines. However, the mechanisms of IL-6-related immune responses in the context of infections are not completely understood.

View Article and Find Full Text PDF

Outer Membrane Vesicles (OMVs) derived from different Gram-negative bacteria have been proposed as an attractive vaccine platform because of their own immunogenic adjuvant properties. Pertussis or whooping cough is a highly contagious vaccine-preventable respiratory disease that resurged during the last decades in many countries. In response to the epidemiological situation, new boosters have been incorporated into vaccination schedules worldwide and new vaccine candidates have started to be designed.

View Article and Find Full Text PDF

In human brucellosis, the liver is frequently affected. triggers a profibrotic response on hepatic stellate cells (HSCs) characterized by inhibition of MMP-9 with concomitant collagen deposition and TGF-β1 secretion through type 4 secretion system (T4SS). Taking into account that it has been reported that the inflammasome is necessary to induce a fibrotic phenotype in HSC, we hypothesized that infection might create a microenvironment that would promote inflammasome activation with concomitant profibrogenic phenotype in HSCs.

View Article and Find Full Text PDF

The immune system is armed with a broad range of receptors to detect and initiate the elimination of bacterial pathogens. Inflammasomes are molecular platforms that sense a diverse range of microbial insults to develop appropriate host response. In that context, noncanonical inflammasome arose as a sensor for Gram-negative bacteria-derived LPS leading to the control of infections.

View Article and Find Full Text PDF

is a facultative intracellular bacterium that causes brucellosis, a prevalent zoonosis that leads to abortion and infertility in cattle, and undulant fever, debilitating arthritis, endocarditis, and meningitis in humans. Signaling pathways triggered by involves stimulator of IFN genes (STING), which leads to production of type I IFNs. In this study, we evaluated the pathway linking the unfolded protein response (UPR) and the endoplasmic reticulum-resident transmembrane molecule STING, during infection.

View Article and Find Full Text PDF

Innate immune response against Brucella abortus involves activation of Toll-like receptors (TLRs) and NOD-like receptors (NLRs). Among the NLRs involved in the recognition of B. abortus are NLRP3 and AIM2.

View Article and Find Full Text PDF

is a Gram-negative intracellular bacterium that causes a worldwide zoonosis termed brucellosis, which is characterized as a debilitating infection with serious clinical manifestations leading to severe complications. In spite of great advances in studies involving host- interactions, there are many gaps related to modulation of the host immune response through regulatory mechanisms. Here, we deep sequenced small RNAs from bone marrow-derived macrophages infected with , identifying 69 microRNAs (miRNAs) that were differentially expressed during infection.

View Article and Find Full Text PDF

The immunoproteasome is a specific proteasome isoform composed of three subunits, termed β1i, β2i, and β5i. Its proteolytic activity enhances the quantity and quality of peptides to be presented by major histocompatibility complex class I (MHC-I) molecules to CD8 T cells. However, the role of the combined deficiency of the three immunoproteasome subunits in protective immunity against bacterial pathogens has not been investigated.

View Article and Find Full Text PDF

is a Gram-negative, facultative intracellular bacterium that causes brucellosis, a worldwide zoonotic disease leading to undulant fever in humans and abortion in cattle. The immune response against this bacterium relies on the recognition of microbial pathogen-associated molecular patterns, such as lipoproteins, lipopolysaccharides, and DNA; however, the immunostimulatory potential of RNA remains to be elucidated. Here, we show that dendritic cells (DCs) produce significant amounts of IL-12, IL-6, and IP-10/CXCL10, when stimulated with purified RNA.

View Article and Find Full Text PDF
Article Synopsis
  • Brucella abortus causes brucellosis, leading to complications like abortion in animals and undulant fever in humans, and it primarily infects macrophages and dendritic cells.
  • Recent research highlights the importance of NLRP12, which inhibits early IL-12 production and suppresses NF-κB and MAPK signaling in response to B. abortus infections.
  • Mice lacking NLRP12 show heightened resistance to early Brucella infection, evidenced by lower bacterial loads, enhanced immune response, and fewer granulomas in the liver, indicating that NLRP12 negatively regulates inflammatory responses against this bacterium.
View Article and Find Full Text PDF

The Toll-like and IL-1 family receptors play critical roles in innate and adaptive immunity against intracellular pathogens. Although previous data demonstrated the importance of TLRs and IL-1R signaling events for the establishment of an effective immune response to mycobacteria, the possible function of the adaptor molecule IL-1R-associated kinase (IRAK)-4 against this pathogen has not been addressed. In this study, we determined the role of IRAK-4 in signaling pathways responsible for controlling mycobacterial infections.

View Article and Find Full Text PDF

The innate immune system is essential for the detection and elimination of bacterial pathogens. Upon inflammasome activation, caspase-1 cleaves pro-IL-1β and pro-IL-18 to their mature forms IL-1β and IL-18, respectively, and the cell undergoes inflammatory death termed pyroptosis. Here, we reviewed recent findings demonstrating that Brucella abortus ligands activate NLRP3 and AIM2 inflammasomes which lead to control of infection.

View Article and Find Full Text PDF

Pathogens are detected by innate immune receptors that, upon activation, orchestrate an appropriate immune response. Recent studies revealed the intracellular signaling cascades involved in the TLR-initiated immune response to Brucella abortus infection. However, no report has elucidated the role of inflammasome receptors in Brucella recognition.

View Article and Find Full Text PDF

Innate immunity serves as the first line of defense against infectious agents such as intracellular bacteria. The innate immune platform includes Toll-like receptors (TLRs), retinoid acid-inducible gene-I-like receptors and other cytosolic nucleic acid sensors, nucleotide-binding and oligomerization domain-like receptors, adaptors, kinases and other signaling molecules that are required to elicit effective responses against different pathogens. Our research group has been using the Gram-negative bacteria Brucella abortus as a model of pathogen.

View Article and Find Full Text PDF

Brucella abortus is a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. Recent studies have revealed that Toll-like receptor (TLR)-initiated immune response to Brucella spp. depends on myeloid differentiation factor 88 (MyD88) signaling.

View Article and Find Full Text PDF

Cysteine proteinases from the Caricaceae belong to the C1 family of the CA clan and display papain-like structured, the archetype enzyme for this group of proteins. Carica candamarcensis, also named Vasconcellea cundinamarcensis, a member of Caricaceae family common to many areas in South America, contains cysteine proteinases with proteolytic activity five to eight-fold higher than those from latex of Carica papaya. The cysteine protease CMS2MS2 from C.

View Article and Find Full Text PDF

Based on degradation of sphingomyelin/cholesterol liposomes containing entrapped horseradish peroxidase, we evaluated the Sphingomyelinase-D (SMase-D) activity of scorpion, spider and snake venoms by monitoring spectrophotometrically the product of oxidation of HRP released. The results indicate that Loxosceles crude venoms (Loxosceles intermedia, Loxosceles laeta, Loxosceles gaucho and Loxosceles similis) displayed SMase-D activity in a concentration-dependent manner. Furthermore, this activity was blocked by the anti-loxoscelic antivenom.

View Article and Find Full Text PDF

The lattices of Carica candamarcensis and Carica papaya, members of the Caricaceae family, contain isoforms of cysteine proteinases that help protect these plants against injury. In a prior study, we fractionated 14 discrete proteinaceous components from C. candamarcensis, two of them displaying mitogenic activity in mammalian cells.

View Article and Find Full Text PDF

The cysteine protease CMS2MS2 from Carica candamarcensis latex has been shown to enhance proliferation of L929 fibroblast and to activate the extracellular signal-regulated protein kinase (ERK). In experiments with CMS2MS2 irreversibly inhibited by E-64, the proliferative effect on fibroblasts remains unaffected. ERK phosphorylation mediated by CMS2MS2 was abolished in the presence of PD 98059 or U0126, both MAPK cascade inhibitors.

View Article and Find Full Text PDF

Prior evidence suggests that proteinases in latex from Caricaceae protect against injuries induced by physical wounding. While the proteolytic enzymes from Carica papaya are well characterized, the homologues from Carica candamarcensis were not given similar attention, probably because its distribution is restricted to South American regions. We describe the chromatographic steps to fractionate 14 components from C.

View Article and Find Full Text PDF

Latex from Caricaceae contains proteolytic enzymes localized in the fruit, which are used ethnopharmacologically to treat digestive disorders. Some of these proteins display proliferative properties when probed with mammalian cells, suggesting a role in the reconstruction of wounded tissue. We tested the efficacy of a proteolytic fraction derived from Carica candamarcensis, designated as P1G10 in experimental rodent models, to protect and heal chemically induced gastric ulcers.

View Article and Find Full Text PDF

In a recent study we showed that two proteinases (CMS2MS2 and CMS2MS3) from Carica candamarcensis enhance mammalian cell proliferation. The aim of the present study is the determination of the primary structure of CMS2MS2 and prediction of its three-dimensional structure. The protein contains 214 residues, including the catalytic triad composed of Cys(25), His(159), and Asn(175).

View Article and Find Full Text PDF