Publications by authors named "Marco de Boer"

The advent of the CRISPR/Cas9 system has transformed the field of human genome engineering and has created new perspectives in the development of innovative cell therapies. However, the absence of a simple, fast and efficient delivery method of CRISPR/Cas9 into primary human cells has been limiting the progress of CRISPR/Cas9-based therapies. Here, we describe an optimized protocol for iTOP-mediated delivery of CRISPR/Cas9 in various human cells, including primary T cells, induced pluripotent stem cells (hiPSCs), Jurkat, ARPE-19 and HEK293 cells.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) represents a major obstacle for the delivery and development of drugs curing brain pathologies. However, this biological barrier presents numerous endogenous specialized transport systems that can be exploited by engineered nanoparticles to enable drug delivery to the brain. In particular, conjugation of glutathione (GSH) onto PEGylated liposomes (G-Technology) showed to safely enhance delivery of encapsulated drugs to the brain.

View Article and Find Full Text PDF

Background: Hallmarks of CNS inflammation, including microglial and astrocyte activation, are prominent features in post-mortem tissue from amyotrophic lateral sclerosis (ALS) patients and in mice overexpressing mutant superoxide dismutase-1 (SOD1G93A). Administration of non-targeted glucocorticoids does not significantly alter disease progression, but this may reflect poor CNS delivery. Here, we sought to discover whether CNS-targeted, liposomal encapsulated glucocorticoid would inhibit the CNS inflammatory response and reduce motor neuron loss.

View Article and Find Full Text PDF

Purpose: Ocular inflammation is associated with the loss of visual acuity and subsequent blindness. Since their development, glucocorticoids have been the mainstay of therapy for ocular inflammatory diseases. However, the clinical benefit is limited by side effects due to the chronic use and generally high dosage that is required for effective treatment.

View Article and Find Full Text PDF

It has been reported that glucocorticoids (GCs) can effectively control seizures in pediatric epilepsy syndromes, possibly by inhibition of inflammation. Since inflammation is supposed to be involved in epileptogenesis, we hypothesized that treatment with GCs would reduce brain inflammation and thereby modify epileptogenesis in a rat model for temporal lobe epilepsy, in which epilepsy gradually develops after electrically induced status epilepticus (SE). To prevent the severe adverse effects that are inevitable with long-term GC treatment, we used liposome nanotechnology (G-Technology(®)) to enhance the sustained delivery to the brain.

View Article and Find Full Text PDF

Partly due to poor blood-brain barrier drug penetration the treatment options for many brain diseases are limited. To safely enhance drug delivery to the brain, glutathione PEGylated liposomes (G-Technology®) were developed. In this study, in rats, we compared the pharmacokinetics and organ distribution of GSH-PEG liposomes using an autoquenched fluorescent tracer after intraperitoneal administration and intravenous administration.

View Article and Find Full Text PDF