Publications by authors named "Marco Zancani"

Plant roots are exposed to hypoxia in waterlogged soils, and they are further challenged by specific phytotoxins produced by microorganisms in such conditions. One such toxin is hexanoic acid (HxA), which, at toxic levels, causes a strong decline in root O consumption. However, the mechanism underlying this process is still unknown.

View Article and Find Full Text PDF

The mitochondrial F-ATP synthase is responsible for coupling the transmembrane proton gradient, generated through the inner membrane by the electron transport chain, to the synthesis of ATP. This enzyme shares a basic architecture with the prokaryotic and chloroplast ones, since it is composed of a catalytic head (F), located in the mitochondrial matrix, a membrane-bound part (F), together with a central and a peripheral stalk. In this review we compare the structural and functional properties of F-ATP synthase in plant mitochondria with those of yeast and mammals.

View Article and Find Full Text PDF

Premise: Despite great attention given to the relationship between plant growth and carbon balance in alpine tree species, little is known about shrubs at the treeline. We hypothesized that the pattern of main nonstructural carbohydrates (NSCs) across elevations depends on the interplay between phenotypic trait plasticity, plant-plant interaction, and elevation.

Methods: We studied the pattern of NSCs (i.

View Article and Find Full Text PDF

In grapevine, the anatomy of xylem conduits and the non-structural carbohydrates (NSCs) content of the associated living parenchyma are expected to influence water transport under water limitation. In fact, both NSC and xylem features play a role in plant recovery from drought stress. We evaluated these traits in petioles of Cabernet Sauvignon (CS) and Syrah (SY) cultivars during water stress (WS) and recovery.

View Article and Find Full Text PDF

The mitochondrial F-ATP synthase is the principal energy-conserving nanomotor of cells that harnesses the proton motive force generated by the respiratory chain to make ATP from ADP and phosphate in a process known as oxidative phosphorylation. In the energy-converting membranes, F-ATP synthase is a multisubunit complex organized into a membrane-extrinsic F sector and a membrane-intrinsic F domain, linked by central and peripheral stalks. Due to its essential role in the cellular metabolism, malfunction of F-ATP synthase has been associated with a variety of pathological conditions, and the enzyme is now considered as a promising drug target for multiple disease conditions and for the regulation of energy metabolism.

View Article and Find Full Text PDF

Toxic metal contamination is one of the major environmental concerns of the recent decade, due to the large application of metals in industrial, healthcare and commercial products, even in the form of nanostructures and nanomaterials. Nevertheless, the effects of silver (Ag) on plants have not yet thoroughly elucidated. Therefore, suspension cell cultures of grapevine were used as a model for investigating silver toxicity.

View Article and Find Full Text PDF

In striking analogy with , etiolated pea stem mitochondria did not show appreciable Ca uptake. Only treatment with the ionophore ETH129 (which allows electrophoretic Ca equilibration) caused Ca uptake followed by increased inner membrane permeability, membrane depolarization and Ca release. Like the permeability transition (PT) of mammals, yeast and Drosophila, the PT of pea stem mitochondria was stimulated by diamide and phenylarsine oxide and inhibited by Mg-ADP and Mg-ATP, suggesting a common underlying mechanism; yet, the plant PT also displayed distinctive features: (i) as in mammals it was desensitized by cyclosporin A, which does not affect the PT of yeast and Drosophila; (ii) similarly to and Drosophila it was inhibited by Pi, which stimulates the PT of mammals; (iii) like in mammals and Drosophila it was sensitized by benzodiazepine 423, which is ineffective in ; (iv) like what observed in Drosophila it did not mediate swelling and cytochrome release, which is instead seen in mammals and .

View Article and Find Full Text PDF

Enhanced shrub growth and expansion are widespread responses to climate warming in many arctic and alpine ecosystems. Warmer temperatures and shrub expansion could cause major changes in plant community structure, affecting both species composition and diversity. To improve our understanding of the ongoing changes in plant communities in alpine tundra, we studied interrelations among climate, shrub growth, shrub cover and plant diversity, using an elevation gradient as a proxy for climate conditions.

View Article and Find Full Text PDF

Growth and development of plants is ultimately driven by light energy captured through photosynthesis. ATP acts as universal cellular energy cofactor fuelling all life processes, including gene expression, metabolism, and transport. Despite a mechanistic understanding of ATP biochemistry, ATP dynamics in the living plant have been largely elusive.

View Article and Find Full Text PDF

Background: Senescence is a key developmental process occurring during the life cycle of plants that can be induced also by environmental conditions, such as starvation and/or darkness. During senescence, strict control of genes regulates ordered degradation and dismantling events, the most remarkable of which are genetically programmed cell death (PCD) and, in most cases, an upregulation of flavonoid biosynthesis in the presence of light. Flavonoids are secondary metabolites that play multiple essential roles in development, reproduction and defence of plants, partly due to their well-known antioxidant properties, which could affect also the same cell death machinery.

View Article and Find Full Text PDF

In the present study, an antibody raised against a peptide sequence of rat bilitranslocase (anti-peptide Ab) was tested on microsomal proteins obtained from red grape berry skin. Previously, this antibody had demonstrated to recognize plant membrane proteins associated with flavonoid binding and transport. Immuno-proteomic assays identified a number of proteins reacting with this particular antibody, suggesting that the flavonoid binding and interaction may be extended not only to carriers of these molecules, but also to enzymes with very different functions.

View Article and Find Full Text PDF

The synthesis of ATP in mitochondria is dependent on a low permeability of the inner membrane. Nevertheless, mitochondria can undergo an increased permeability to solutes, named permeability transition (PT) that is mediated by a permeability transition pore (PTP). PTP opening requires matrix Ca(2+) and leads to mitochondrial swelling and release of intramembrane space proteins (e.

View Article and Find Full Text PDF

In this paper, lipase activity was characterized in coffee (Coffea arabica L.) seeds to determine its involvement in lipid degradation during germination. The lipase activity, evaluated by a colorimetric method, was already present before imbibition of seeds and was further induced during the germination process.

View Article and Find Full Text PDF

This paper aims at analysing the synthesis of flavonoids, their import and export in plant cell compartments, as well as their involvement in the response to stress, with particular reference to grapevine (Vitis vinifera L.). A multidrug and toxic compound extrusion (MATE) as well as ABC transporters have been demonstrated in the tonoplast of grape berry, where they perform a flavonoid transport.

View Article and Find Full Text PDF

Apple trees (Malus domestica Borkh.) may be affected by apple proliferation (AP), caused by 'Candidatus Phytoplasma mali'. Some plants can spontaneously recover from the disease, which implies the disappearance of symptoms through a phenomenon known as recovery.

View Article and Find Full Text PDF

The mitochondrial permeability transition (PT) is a well-recognized phenomenon that allows mitochondria to undergo a sudden increase of permeability to solutes with molecular mass ≤ 1500Da, leading to organelle swelling and structural modifications. The relevance of PT relies on its master role in the manifestation of programmed cell death (PCD). This function is performed by a mega-channel (in some cases inhibited by cyclosporin A) named permeability transition pore (PTP), whose function could derive from the assembly of different mitochondrial proteins.

View Article and Find Full Text PDF

Embryogenic cell masses (ECM) of Abies cephalonica were grown on proliferation media in the presence and absence of fulvic acid (FA), whose molecular composition and conformational rigidity were evaluated by CPMAS-¹³C NMR spectroscopy. To assess the physiological effects of this humic material during proliferation and maturation stages of somatic embryogenesis (SE), proliferation rate, proportion of consecutive developmental stages of pro-embryogenic masses (PEM), cellular ATP and glucose-6-phosphate were evaluated at regular intervals. FA increased the proliferation rate, especially during the early sampling days, and the percentage of PEM in their advanced developmental stage.

View Article and Find Full Text PDF

Flavonoids are a class of secondary metabolites present in large amounts in grapevine (Vitis vinifera L.), which are involved in several aspects of its physiology (e.g.

View Article and Find Full Text PDF

Flavonoids are a group of secondary metabolites widely distributed in plants that represent a huge portion of the soluble phenolics present in grapevine (Vitis vinifera L.). These compounds play different physiological roles and are often involved in protection against biotic and abiotic stress.

View Article and Find Full Text PDF

To investigate the possible role of basic residues in H+ translocation through vacuolar-type H+-pumping pyrophosphatases (V-PPases), conserved arginine and lysine residues predicted to reside within or close to transmembrane domains of an Arabidopsis thaliana V-PPase (AVP1) were subjected to site-directed mutagenesis. One of these mutants (K461A) exhibited a "decoupled" phenotype in which proton-pumping but not hydrolysis was inhibited. Similar results were reported previously for an E427Q mutant, resulting in the proposal that E427 might be involved in proton translocation.

View Article and Find Full Text PDF

A soluble protein with a molecular mass of 55 kDa has been purified from etiolated pea stem mitochondria. The protein exhibits a Mg2+-requiring PPiase activity, with an optimum at pH 9.0, which is not stimulated by monovalent cations, but inhibited by F-, Ca2+, aminomethylenediphosphate and imidodiphosphate.

View Article and Find Full Text PDF

In this work, evidence for the presence of ferritins in plant mitochondria is supplied. Mitochondria were isolated from etiolated pea stems and Arabidopsis thaliana cell cultures. The proteins were separated by SDS/PAGE.

View Article and Find Full Text PDF