Publications by authors named "Marco Zanatta"

The protein dynamical transition marks an increase in atomic mobility and the onset of anharmonic motions at a critical temperature ( ), which is considered relevant for protein functionality. This phenomenon is ubiquitous, regardless of protein composition, structure and biological function and typically occurs at large protein content, to avoid water crystallization. Recently, a dynamical transition has also been reported in non-biological macromolecules, such as poly(-isopropyl acrylamide) (PNIPAM) microgels, bearing many similarities to proteins.

View Article and Find Full Text PDF

Volcanic eruptions generate huge amounts of material with a wide range of compositions and therefore different physicochemical properties. We present a combined Raman and calorimetric study carried out on four synthetic basaltic glasses with different alkali vs iron ratio which spans the typical compositions of basalts on Earth. Differential scanning calorimetry shows that changes of this ratio modify the glass transition interval whereas Raman spectra allow to gain insight about the structure of the glass in the microscopic and macroscopic range.

View Article and Find Full Text PDF

The numerical modelling of magma transport and volcanic eruptions requires accurate knowledge of the viscosity of magmatic liquids as a function of temperature and melt composition. However, there is growing evidence that volcanic melts can be prone to nanoscale modification and crystallization before and during viscosity measurements. This challenges the possibility of being able to quantify the crystal-free melt phase contribution to the measured viscosity.

View Article and Find Full Text PDF

Detailed crystallographic information provided by X-ray diffraction (XRD) is complementary to molecular information provided by Raman spectroscopy. Accordingly, the combined use of these techniques allows the identification of an unknown compound without ambiguity. However, a full combination of Raman and XRD results requires an appropriate and reliable reference database with complete information.

View Article and Find Full Text PDF

The long debated protein dynamical transition was recently found also in nonbiological macromolecules, such as poly- N-isopropylacrylamide (PNIPAM) microgels. Here, by using atomistic molecular dynamics simulations, we report a description of the molecular origin of the dynamical transition in these systems. We show that PNIPAM and water dynamics below the dynamical transition temperature T are dominated by methyl group rotations and hydrogen bonding, respectively.

View Article and Find Full Text PDF

A low-temperature dynamical transition has been reported in several proteins. We provide the first observation of a "protein-like" dynamical transition in nonbiological aqueous environments. To this aim, we exploit the popular colloidal system of poly--isopropylacrylamide (PNIPAM) microgels, extending their investigation to unprecedentedly high concentrations.

View Article and Find Full Text PDF

We describe here a partial skull with associated mandible of a large felid from Monte Argentario, Italy (Early Pleistocene; ~1.5 million years). Propagation x-ray phase-contrast synchrotron microtomography of the specimen, still partially embedded in the rock matrix, allows ascribing it reliably to Acinonyx pardinensis, one of the most intriguing extinct carnivorans of the Old World Plio-Pleistocene.

View Article and Find Full Text PDF

Internal subnanosecond timescale motions are key for the function of proteins, and are coupled to the surrounding solvent environment. These fast fluctuations guide protein conformational changes, yet their role for protein stability, and for unfolding, remains elusive. Here, in analogy with the Lindemann criterion for the melting of solids, we demonstrate a common scaling of structural fluctuations of lysozyme protein embedded in different environments as the thermal unfolding transition is approached.

View Article and Find Full Text PDF

Ice residual (IR) and total aerosol properties were measured in mixed-phase clouds (MPCs) at the high-alpine Jungfraujoch research station. Black carbon (BC) content and coating thickness of BC-containing particles were determined using single-particle soot photometers. The ice activated fraction (IAF), derived from a comparison of IR and total aerosol particle size distributions, showed an enrichment of large particles in the IR, with an increase in the IAF from values on the order of 10 to 10 for 100 nm (diameter) particles to 0.

View Article and Find Full Text PDF

A detailed investigation of the THz dynamics in glassy SiSe2 by means of neutron inelastic scattering is presented. To carefully map the translational dynamics and the region of the boson peak, we carried out two different experiments with sharp and broad resolutions coupled with a narrow and a wide kinematic range, respectively. Data show a complex pattern of excitations made up of three components.

View Article and Find Full Text PDF