Publications by authors named "Marco Van der Toorn"

Homemade e-liquids and power-adjustable vaping devices may carry higher risks than commercial formulations and fixed-power devices. This study used human macrophage-like and bronchial epithelial (NHBE) cell cultures to investigate toxicity of homemade e-liquids containing propylene glycol and vegetable glycerin (PG/VG), nicotine, vitamin E acetate (VEA), medium-chain fatty acids (MCFAs), phytol, and cannabidiol (CBD). SmallAir™ organotypic epithelial cultures were exposed to aerosols generated at different power settings (10-50 W).

View Article and Find Full Text PDF

In vitro screening for pharmacological activity of existing drugs showed chloroquine and hydroxychloroquine to be effective against severe acute respiratory syndrome coronavirus 2. Oral administration of these compounds to obtain desired pulmonary exposures resulted in dose-limiting systemic toxicity in humans. However, pulmonary drug delivery enables direct and rapid administration to obtain higher local tissue concentrations in target tissue.

View Article and Find Full Text PDF

Iota-carrageenan (IC) nasal spray, a medical device approved for treating respiratory viral infections, has previously been shown to inhibit the ability of a variety of respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), to enter and replicate in the cell by interfering with the virus binding to the cell surface. The aim of this study was to further investigate the efficacy and safety of IC in SARS-CoV-2 infection in advanced models of the human respiratory epithelium, the primary target and entry port for SARS-CoV-2. We extended the safety assessment of nebulized IC in a 3-dimensional model of reconstituted human bronchial epithelium, and we demonstrated the efficacy of IC in protecting reconstituted nasal epithelium against viral infection and replication of a patient-derived SARS-CoV-2 strain.

View Article and Find Full Text PDF

Aging and smoking are major risk factors for cardiovascular diseases (CVD). Our in vitro study compared, in the context of aging, the effects of the aerosol of Tobacco Heating System 2.2 (THS; an electrically heated tobacco product) and 3R4F reference cigarette smoke (CS) on processes that contribute to vascular pathomechanisms leading to CVD.

View Article and Find Full Text PDF

Mitochondria are among the first responders to various stress factors that challenge cell and tissue homeostasis. Various plant alkaloids have been investigated for their capacity to modulate mitochondrial activities. In this study, we used isolated mitochondria from mouse brain and liver tissues to assess nicotine, anatabine and anabasine, three alkaloids found in tobacco plant, for potential modulatory activity on mitochondrial bioenergetics parameters.

View Article and Find Full Text PDF

Monoamine oxidases (MAO) are a valuable class of mitochondrial enzymes with a critical role in neuromodulation. In this study, we investigated the effect of natural MAO inhibitors on novel environment-induced anxiety by using the zebrafish novel tank test (NTT). Because zebrafish spend more time at the bottom of the tank when they are anxious, anxiolytic compounds increase the time zebrafish spend at the top of the tank and vice versa.

View Article and Find Full Text PDF

Cigarette smoking causes major preventable diseases, morbidity, and mortality worldwide. Smoking cessation and prevention of smoking initiation are the preferred means for reducing these risks. Less harmful tobacco products, termed modified-risk tobacco products (MRTP), are being developed as a potential alternative for current adult smokers who would otherwise continue smoking.

View Article and Find Full Text PDF

Background/aims: Adverse effects of cigarette smoke on health are widely known. Heating rather than combusting tobacco is one of strategies to reduce the formation of toxicants. The sensitive nature of mitochondrial dynamics makes the mitochondria an early indicator of cellular stress.

View Article and Find Full Text PDF
Article Synopsis
  • - The adverse effects of cigarette smoking have led to prevention efforts and smoking cessation strategies, as well as the emerging concept of tobacco harm reduction through modified risk tobacco products (pMRTPs) like e-cigarettes and heated tobacco products.
  • - pMRTPs aim to deliver nicotine while significantly reducing toxicants compared to traditional cigarettes, potentially lowering the risk of smoking-related diseases for users who switch entirely to these products.
  • - Research indicates that while nicotine is a key factor in smoking addiction, other elements also contribute, and a study found that certain pMRTPs do not inhibit monoamine oxidase (MAO) activity, contrasting with traditional cigarette smoke that has significant MAO-inhibitory effects.
View Article and Find Full Text PDF

Mitochondria are multifunctional and dynamic organelles deeply integrated into cellular physiology and metabolism. Disturbances in mitochondrial function are involved in several disorders such as neurodegeneration, cardiovascular diseases, metabolic diseases, and also in the aging process. Nicotine is a natural alkaloid present in the tobacco plant which has been well studied as a constituent of cigarette smoke.

View Article and Find Full Text PDF

Cigarette smoking causes cardiovascular diseases. Heating tobacco instead of burning it reduces the amount of toxic compounds in the aerosol and may exert a reduced impact on health compared with cigarette smoke. Aqueous extract from the aerosol of a potential modified risk tobacco product, the Carbon Heated Tobacco Product (CHTP) 1.

View Article and Find Full Text PDF

Cigarette smoking is the leading cause of preventable lung cancer (LC). Reduction of harmful constituents by heating rather than combusting tobacco may have the potential to reduce the risk of LC. We evaluated functional and molecular changes in human bronchial epithelial BEAS-2B cells following a 12-week exposure to total particulate matter (TPM) from the aerosol of a candidate modified-risk tobacco product (cMRTP) in comparison with those following exposure to TPM from the 3R4F reference cigarette.

View Article and Find Full Text PDF

Mitochondrial dysfunction caused by cigarette smoke is involved in the oxidative stress-induced pathology of airway diseases. Reducing the levels of harmful and potentially harmful constituents by heating rather than combusting tobacco may reduce mitochondrial changes that contribute to oxidative stress and cell damage. We evaluated mitochondrial function and oxidative stress in human bronchial epithelial cells (BEAS 2B) following 1- and 12-week exposures to total particulate matter (TPM) from the aerosol of a candidate modified-risk tobacco product, the Tobacco Heating System 2.

View Article and Find Full Text PDF

Recent data indicate a role for airway epithelial necroptosis, a regulated form of necrosis, and the associated release of damage-associated molecular patterns (DAMPs) in the development of chronic obstructive pulmonary disease (COPD). DAMPs can activate pattern recognition receptors (PRRs), triggering innate immune responses. We hypothesized that cigarette smoke (CS)-induced epithelial necroptosis and DAMP release initiate airway inflammation in COPD.

View Article and Find Full Text PDF

Reduction of harmful constituents by heating rather than combusting tobacco is a promising new approach to reduce harmful effects associated with cigarette smoking. We investigated the effect from a new candidate modified risk tobacco product, the tobacco heating system (THS) 2.2, on the migratory behavior of monocytes in comparison with combustible 3R4F reference cigarettes.

View Article and Find Full Text PDF

Monocyte adhesion and migration to the subendothelial space represent critical steps in atherogenesis. Here, we investigated whether extracts from the aerosol of a prototypic modified risk tobacco product (pMRTP), based on heating rather than combusting tobacco, exhibited differential effects on the migratory behavior of monocytes compared with that from the reference cigarette, 3R4F. THP-1 cells, a monocytic cell line, and human coronary arterial endothelial cells (HCAECs) were used to investigate chemotaxis and transendothelial migration (TEM) of monocytes in conventional and impedance-based systems.

View Article and Find Full Text PDF

Background: Bronchiolitis obliterans syndrome (BOS), the major cause of death on lung transplantation, is characterized by bronchiolar inflammation and tissue remodeling. Matrix metalloproteinases (MMPs) have been implicated in these processes, although it is still unclear whether MMP activity and binding to their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs), is abnormal in BOS.

Methods: We studied total MMP-1,-2,-3,-7,-8,-9,-12,-13 levels, their activity state using activity-based extraction and their binding to TIMP-1, -2, -3, and -4 in bronchoalveolar lavage (BAL) of lung transplant recipients with good outcome and BOS using a multiplex immunoassay.

View Article and Find Full Text PDF

Cigarette smoking, the major causative factor for the development of chronic obstructive pulmonary disease, is associated with neutrophilic airway inflammation. Cigarette smoke (CS) exposure can induce a switch from apoptotic to necrotic cell death in airway epithelium. Therefore, we hypothesized that CS promotes neutrophil necrosis with subsequent release of damage-associated molecular patterns (DAMPs), including high mobility group box 1 (HMGB1), alarming the innate immune system.

View Article and Find Full Text PDF

Protocadherin-1 (PCDH1) is a novel susceptibility gene for airway hyperresponsiveness, first identified in families exposed to cigarette smoke and is expressed in bronchial epithelial cells. Here, we asked how mouse Pcdh1 expression is regulated in lung structural cells in vivo under physiological conditions, and in both short-term cigarette smoke exposure models characterized by airway inflammation and hyperresponsiveness and chronic cigarette smoke exposure models. Pcdh1 gene-structure was investigated by Rapid Amplification of cDNA Ends.

View Article and Find Full Text PDF

Allergic reactions affect millions of people worldwide. The need for new and effective antiallergic agents is evident, and insight into the underlying mechanisms that lead to allergic events is necessary. Herein, we report the design, synthesis, and activity of photoswitchable mast cell activation inhibitors.

View Article and Find Full Text PDF

Background: Cigarette smoking (CS) is the most important risk factor for COPD, which is associated with neutrophilic airway inflammation. We hypothesize, that highly reactive aldehydes are critical for CS-induced neutrophilic airway inflammation.

Methods: BALB/c mice were exposed to CS, water filtered CS (WF-CS) or air for 5 days.

View Article and Find Full Text PDF

Cigarette smoking is the major risk factor for chronic obstructive pulmonary disease. Cigarette smoke (CS) causes oxidative stress and severe damage to proteins in the lungs. One of the main systems to protect cells from the accumulation of damaged proteins is the ubiquitin-proteasome pathway.

View Article and Find Full Text PDF

Background: A major feature of chronic obstructive pulmonary disease (COPD) is airway remodelling, which includes an increased airway smooth muscle (ASM) mass. The mechanisms underlying ASM remodelling in COPD are currently unknown. We hypothesized that cigarette smoke (CS) and/or lipopolysaccharide (LPS), a major constituent of CS, organic dust and gram-negative bacteria, that may be involved in recurrent airway infections and exacerbations in COPD patients, would induce phenotype changes of ASM.

View Article and Find Full Text PDF

Background: Inflammation increases during exacerbations of COPD, but only a few studies systematically assessed these changes. Better identification of these changes will increase our knowledge and potentially guide therapy, for instance by helping with quicker distinction of bacterially induced exacerbations from other causes.

Aim: To identify which inflammatory parameters increase during COPD exacerbations compared to stable disease, and to compare bacterial and non-bacterial exacerbations.

View Article and Find Full Text PDF