Publications by authors named "Marco Uttieri"

Article Synopsis
  • The NEREA initiative focuses on creating an augmented observatory in the Gulf of Naples to improve our understanding of marine ecosystems through a comprehensive approach.
  • It combines traditional research methods with advanced techniques like metabarcoding and metagenomics, building on past expeditions and research sites.
  • In its first 10 months (April 2019 to January 2020), NEREA collected extensive data on physical and chemical parameters, plankton biodiversity, and genetics, resulting in significant insights into marine ecosystems.
View Article and Find Full Text PDF

Escaping a predator is one of the keys to success for any living creature. The performance of adults (males, females, and ovigerous females) of the cyclopoid copepod Oithona davisae exposed to an electrical stimulus is analysed as a function of temperature by measuring characteristic parameters associated with the escape movement (distance covered, duration of the appendage movement, mean and maximum escape speeds, Reynolds number). In addition, as a proxy for the efficiency of the motion, the Strouhal number was calculated.

View Article and Find Full Text PDF

Living organisms deeply rely on the acquisition of chemical signals in any aspect of their life, from searching for food, mating and defending themselves from stressors. Copepods, the most abundant and ubiquitous metazoans on Earth, possess diversified and highly specified chemoreceptive structures along their body. The detection of chemical stimuli activates specific pathways, although this process has so far been analyzed only on a relatively limited number of species.

View Article and Find Full Text PDF

Crowding has a major impact on the dynamics of many material and biological systems, inducing effects as diverse as glassy dynamics and swarming. While this issue has been deeply investigated for a variety of living organisms, more research remains to be done on the effect of crowding on the behaviour of copepods, the most abundant metazoans on Earth. To this aim, we experimentally investigate the swimming behaviour, used as a dynamic proxy of animal adaptations, of males and females of the calanoid copepod at different densities of individuals (10, 50 and 100 ind.

View Article and Find Full Text PDF

The salinity tolerance and the effect of temperature were studied on the behavior and motor activity of the nonindigenous Indo-Pacific calanoid copepod Pseudodiaptomus marinus, first found in Sevastopol Bay (Black Sea) in autumn 2016. According to the index of median lethal salinity (LS ), the salinity tolerance range of adult P. marinus collected at 18.

View Article and Find Full Text PDF

Oil spills are one of the most dangerous sources of pollution in aquatic ecosystems. Owing to their pivotal position in the food web, pelagic copepods can provide crucial intermediary transferring oil between trophic levels. In this study we show that the calanoid Paracartia grani can actively modify the size-spectrum of oil droplets.

View Article and Find Full Text PDF

Suspensions of small planktonic copepods represent a special category in the realm of active matter, as their size falls within the range of colloids, while their motion is so complex that it cannot be rationalized according to basic models of self-propelled particles. Indeed, the wide range of individual variability and swimming patterns resemble the behaviour of much larger animals. By analysing hundreds of three-dimensional trajectories of the planktonic copepod Clausocalanus furcatus, we investigate the possibility of detecting how the motion of this species is affected by different external conditions, such as the presence of food and the effect of gravity.

View Article and Find Full Text PDF

This proof-of-concept study integrates the surface currents measured by high-frequency coastal radars with plankton time-series data collected at a fixed sampling point from the Mediterranean Sea (MareChiara Long Term Ecological Research site in the Gulf of Naples) to characterize the spatial origin of phytoplankton assemblages and to scrutinize the processes ruling their dynamics. The phytoplankton community generally originated from the coastal waters whereby species succession was mainly regulated by biological factors (life-cycle processes, species-specific physiological performances and inter-specific interactions). Physical factors, e.

View Article and Find Full Text PDF

The encounter of individuals-prey, predators and mates-living in the surrounding environment is a fundamental process in the life of an organism. Along with the sensory abilities, this process will be regulated by the movement rules adopted by the individual. In this work we discuss the encounter-enhancement effect due to different natatorial modes by calculating the number of encounters realised by differently convoluted trajectories in two homogeneous distributions of particles.

View Article and Find Full Text PDF