Publications by authors named "Marco Tulio Nunez"

Fourteen coumarin-derived compounds modified at the C3 carbon of coumarin with an α,β-unsaturated ketone were synthesized. These compounds may be designated as chalcocoumarins (3-cinnamoyl-2-chromen-2-ones). Both chalcones and coumarins are recognized scaffolds in medicinal chemistry, showing diverse biological and pharmacological properties among which neuroprotective activities and multiple enzyme inhibition, including mitochondrial enzyme systems, stand out.

View Article and Find Full Text PDF

Iron accumulation and neuroinflammation are pathological conditions found in several neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Iron and inflammation are intertwined in a bidirectional relationship, where iron modifies the inflammatory phenotype of microglia and infiltrating macrophages, and in turn, these cells secrete diffusible mediators that reshape neuronal iron homeostasis and regulate iron entry into the brain. Secreted inflammatory mediators include cytokines and reactive oxygen/nitrogen species (ROS/RNS), notably hepcidin and nitric oxide (·NO).

View Article and Find Full Text PDF

Iron and calcium share the common feature of being essential for normal neuronal function. Iron is required for mitochondrial function, synaptic plasticity, and the development of cognitive functions whereas cellular calcium signals mediate neurotransmitter exocytosis, axonal growth and synaptic plasticity, and control the expression of genes involved in learning and memory processes. Recent studies have revealed that cellular iron stimulates calcium signaling, leading to downstream activation of kinase cascades engaged in synaptic plasticity.

View Article and Find Full Text PDF

Objective: To evaluate divalent metal transporter-1 (DMT1) expression in healthy women's and endometriosis patients' endometrium and to analyze DMT1 and ferritin light chain (Fn-L) expression modulation by iron overload and IL-1β in endometrial stromal cells (ESCs).

Design: Observational and experimental study.

Setting: University hospital research laboratory.

View Article and Find Full Text PDF

The generation of abnormally high levels of reactive oxygen species (ROS) is linked to cellular dysfunction, including neuronal toxicity and neurodegeneration. However, physiological ROS production modulates redox-sensitive roles of several molecules such as transcription factors, signaling proteins, and cytoskeletal components. Changes in the functions of redox-sensitive proteins may be important for defining key aspects of stem cell proliferation and differentiation, neuronal maturation, and neuronal plasticity.

View Article and Find Full Text PDF

Objective: To evaluate the effect of iron overload on nuclear factor kappa-B (NF-κB) activation in human endometrial stromal cells (ESCs).

Design: Experimental study.

Setting: University hospital research laboratory.

View Article and Find Full Text PDF

Iron is essential for crucial neuronal functions but is also highly toxic in excess. Neurons acquire iron through transferrin receptor-mediated endocytosis and via the divalent metal transporter 1 (DMT1). The N-terminus (1A, 1B) and C-terminus (+IRE, -IRE) splice variants of DMT1 originate four protein isoforms, all of which supply iron to cells.

View Article and Find Full Text PDF

There is increasing evidence that accumulation of redox-active iron in mitochondria leads to oxidative damage and contributes to various neurodegenerative diseases, such as Friedreich's ataxia and Parkinsons disease. In this work, we examined the existence of regulatory mechanisms for mitochondrial iron uptake and storage. To that end, we used rhodamine B-[(1,10-phenanthrolin-5-yl)amino carbonyl] benzyl ester, a new fluorescent iron-sensitive probe that is targeted specifically to the mitochondrion.

View Article and Find Full Text PDF

Brain cells have a highly active oxidative metabolism, yet they contain only low to moderate superoxide dismutase and catalase activities. Thus, their antioxidant defenses rely mainly on cellular reduced glutathione levels. In this work, in cortical neurons we characterized viability and changes in reduced and oxidized glutathione levels in response to a protocol of iron accumulation.

View Article and Find Full Text PDF

Hereditary hemochromatosis (HH) is a condition in which intestinal iron absorption is greatly elevated. Present treatment is weekly phlebotomy, affecting quality of life and leading to recurrent infections. The iron transporter divalent metal transporter-1 (DMT-1) of enterocytes is responsible for iron uptake from the intestinal lumen; iron is further extruded into the blood by the basolateral transporter ferroportin-1.

View Article and Find Full Text PDF

This review is focused on the structure and function of Alzheimer's amyloid deposits. Amyloid formation is a process in which normal well-folded cellular proteins undergo a self-assembly process that leads to the formation of large and ordered protein structures. Amyloid deposition, oligomerization, and higher order polymerization, and the structure adopted by these assemblies, as well as their functional relationship with cell biology are underscored.

View Article and Find Full Text PDF

Oxidative stress phenomena have been related with the onset of neurodegenerative diseases. Particularly in Alzheimer Disease (AD), oxygen reactive species (ROS) and its derivatives can be found in brain samples of postmortem AD patients. However, the mechanisms by which oxygen reactive species can alter neuronal function are still not elucidated.

View Article and Find Full Text PDF