The execution of goal-oriented behaviours requires a spatially coherent alignment between sensory and motor maps. The current model for sensorimotor transformation in the superior colliculus relies on the topographic mapping of static spatial receptive fields onto movement endpoints. Here, to experimentally assess the validity of this canonical static model of alignment, we dissected the visuo-motor network in the superior colliculus and performed in vivo intracellular and extracellular recordings across layers, in restrained and unrestrained conditions, to assess both the motor and the visual tuning of individual motor and premotor neurons.
View Article and Find Full Text PDFEpitranscriptomics represents a further layer of gene expression regulation. Specifically, N6-methyladenosine (m6A) regulates RNA maturation, stability, degradation, and translation. Regarding microRNAs (miRNAs), while it has been reported that m6A impacts their biogenesis, the functional effects on mature miRNAs remain unclear.
View Article and Find Full Text PDFInfectious peritonitis is a leading cause of peritoneal functional impairment and a primary factor for therapy discontinuation in peritoneal dialysis (PD) patients. Although bacterial infections are a common cause of peritonitis episodes, emerging evidence suggests a role for viral pathogens. Toll-like receptors (TLRs) specifically recognize conserved pathogen-associated molecular patterns (PAMPs) from bacteria, viruses, and fungi, thereby orchestrating the ensuing inflammatory/immune responses.
View Article and Find Full Text PDFBackground: Peritoneal metastasis, which accounts for 85% of all epithelial ovarian carcinoma (EOC) metastases, is a multistep process that requires the establishment of adhesive interactions between cancer cells and the peritoneal membrane. Interrelations between EOC and the mesothelial stroma are critical to facilitate the metastatic process. No data is available so far on the impact of histone acetylation/deacetylation, a potentially relevant mechanism governing EOC metastasis, on mesothelial cells (MCs)-mediated adhesion.
View Article and Find Full Text PDFBackground: Despite the significant progress achieved in understanding the pathology and clinical management of SARS-CoV-2 infection, still pathogenic and clinical issues need to be clarified. Treatment with modulators of epigenetic targets, i.e.
View Article and Find Full Text PDFIntroduction: Peripheral monocytes in humans are conventionally divided into classical (CL, CD14CD16), intermediate (INT, CD14CD16) and non-classical (NC, CD14CD16) cells, based on their expression levels of CD14 and CD16. A major fraction of the NC-monocytes has been shown to express the 6-sulfo LacNAc (slan) antigen, but whether these slan/NC-monocytes represent the prototypical non-classical monocytes or whether they are simply a sub-fraction with identical features as the remainder of NC monocytes is still unclear.
Methods: We analyzed transcriptome (by bulk and single cell RNA-seq), proteome, cell surface markers and production of discrete cytokines by peripheral slan/NC- and slan/NC-monocytes, in comparison to total NC-, CL- and INT- monocytes.
Transsynaptic viral vectors provide means to gain genetic access to neurons based on synaptic connectivity and are essential tools for the dissection of neural circuit function. Among them, the retrograde monosynaptic ΔG-Rabies has been widely used in neuroscience research. A recently developed engineered version of the ΔG-Rabies, the non-toxic self-inactivating (SiR) virus, allows the long term genetic manipulation of neural circuits.
View Article and Find Full Text PDFCurr Opin Neurobiol
October 2023
The mitochondrial SIRT3 modulates several biological pathways such as cancer, metabolism, and hypoxia-related diseases. Recently, we discovered new 1,4-dihydropyridines, compounds and , the latter being a SIRT3-specific activator. In the present work, a novel - and -related small series of compounds have been developed, with displaying the strongest SIRT3 binding and activation, with a of 29 μM and 387% of enzyme activation.
View Article and Find Full Text PDFAn exciting frontier in circuit neuroscience lies at the intersection between neural network mapping and single-cell genomics. Monosynaptic rabies viruses provide a promising platform for the merger of circuit mapping methods with -omics approaches. However, three key limitations have hindered the extraction of physiologically meaningful gene expression profiles from rabies-mapped circuits: inherent viral cytotoxicity, high viral immunogenicity and virus-induced alteration of cellular transcriptional regulation.
View Article and Find Full Text PDFYES-associated protein (YAP) is a transcriptional cofactor with a key role in the regulation of several physio-pathological cellular processes, by integrating multiple cell autonomous and microenvironmental cues. YAP is the main downstream effector of the Hippo pathway, a tumor-suppressive signaling able to transduce several extracellular signals. The Hippo pathway acts restraining YAP activity, since its activation induces YAP phosphorylation and cytoplasmic sequestration.
View Article and Find Full Text PDFAfter over 30 years of research, the development of HDAC inhibitors led to five FDA/Chinese FDA-approved drugs and many others under clinical or preclinical investigation to treat cancer and non-cancer diseases. Herein, based on our recent development of pyridine-based isomers as HDAC inhibitors, we report a series of novel 5-acylamino-2-pyridylacrylic- and -picolinic hydroxamates and 2'-aminoanilides 5-8 as anticancer agents. The hydroxamate 5d proved to be quite HDAC3/6-selective exhibiting IC values of 80 and 11 nM, respectively, whereas the congener 5e behaved as inhibitor of HDAC1-3, -6, -8, and -10 (class I/IIb-selective inhibitor) at nanomolar level.
View Article and Find Full Text PDFObjective: Insulin-like peptide 5 (INSL5) signalling, through its cognate receptor relaxin/insulin-like family peptide receptor 4 (RXFP4), has been reported to be orexigenic, and the high fat diet (HFD) preference observed in wildtype mice is altered in Rxfp4 knock-out mice. In this study, we used a new Rxfp4-Cre mouse model to investigate the mechanisms underlying these observations.
Methods: We generated transgenic Rxfp4-Cre mice and investigated central expression of Rxfp4 by RT-qPCR, RNAscope and intraparenchymal infusion of INSL5.
Long non-coding RNAs (lncRNAs) exert central pathophysiological roles through the regulation of gene expression both at transcriptional and post-transcriptional levels. The characterization of lncRNAs' interactome is disclosing several new mechanisms that control disease onset and progression thus opening the way to the development of new pioneering therapeutic approaches. Regarding the lncRNA HOTAIR, found upregulated in several cancers and in liver fibrosis, it has been proved as a potential therapeutic target.
View Article and Find Full Text PDFThe growing knowledge on several classes of non-coding RNAs (ncRNAs) and their different functional roles has aroused great interest in the scientific community. Beyond the Central Dogma of Biology, it is clearly known that not all RNAs code for protein products, and they exert a broader repertoire of biological functions. As described in this review, ncRNAs participate in gene expression regulation both at transcriptional and post-transcriptional levels and represent critical elements driving and controlling pathophysiological processes in multicellular organisms.
View Article and Find Full Text PDFHeterogeneous nuclear ribonucleoproteins (hnRNPs) control gene expression by acting at multiple levels and are often deregulated in epithelial tumors; however, their roles in the fine regulation of cellular reprogramming, specifically in epithelial-mesenchymal transition (EMT), remain largely unknown. Here, we focused on the hnRNP-Q (also known as SYNCRIP), showing by molecular analysis that in hepatocytes it acts as a "mesenchymal" gene, being induced by TGFβ and modulating the EMT. SYNCRIP silencing limits the induction of the mesenchymal program and maintains the epithelial phenotype.
View Article and Find Full Text PDFAlthough lung fibrosis has a major impact in COVID-19 disease, its pathogenesis is incompletely understood. In particular, no direct evidence of pleura implication in COVID-19-related fibrotic damage has been reported so far. In this study, the expression of epithelial cytokeratins and Wilms tumor 1 (WT1), specific markers of mesothelial cells (MCs), was analyzed in COVID-19 and unrelated pleura autoptic samples.
View Article and Find Full Text PDFBackground & Aims: Patients with HCV who achieve a sustained virological response (SVR) on direct-acting antiviral (DAA) therapy still need to be monitored for signs of liver disease progression. To this end, the identification of both disease biomarkers and therapeutic targets is necessary.
Methods: Extracellular vesicles (EVs) purified from plasma of 15 healthy donors (HDs), and 16 HCV-infected patients before (T0) and after (T6) DAA treatment were utilized for functional and miRNA cargo analysis.
Adenosine deaminases acting on RNA (ADARs) are enzymes that convert adenosines to inosines in double-stranded RNAs (RNA editing A-to-I). ADAR1 and ADAR2 were previously reported as HIV-1 proviral factors. The aim of this study was to investigate the composition of the ADAR2 ribonucleoprotein complex during HIV-1 expression.
View Article and Find Full Text PDF