We present a next-to-next-to-leading order (NNLO) global QCD analysis of the proton's helicity parton distribution functions, the first of its kind. To obtain the distributions, we use data for longitudinal spin asymmetries in inclusive and semi-inclusive lepton-nucleon scattering as well as in weak-boson and hadron or jet production in proton-proton scattering. We analyze the data using QCD perturbation theory at NNLO accuracy, employing approximations provided by the threshold resummation formalism in cases where full NNLO results for partonic hard-scattering functions are not readily available.
View Article and Find Full Text PDFWe discuss the impact of recent high-statistics Relativistic Heavy Ion Collider data on the determination of the gluon polarization in the proton in the context of a global QCD analysis of polarized parton distributions. We find evidence for a nonvanishing polarization of gluons in the region of momentum fraction and at the scales mostly probed by the data. Although information from low momentum fractions is presently lacking, this finding is suggestive of a significant contribution of gluon spin to the proton spin, thereby limiting the amount of orbital angular momentum required to balance the proton spin budget.
View Article and Find Full Text PDFWe present a new analysis of the helicity parton distributions of the nucleon. The analysis takes into account the available data from inclusive and semi-inclusive polarized deep inelastic scattering, as well as from polarized proton-proton (p-p) scattering at RHIC. For the first time, all theoretical calculations are performed fully at next-to-leading order (NLO) of perturbative QCD, using a method that allows incorporation of the NLO corrections in a very fast and efficient way in the analysis.
View Article and Find Full Text PDFRecent preliminary PHENIX data are consistent with a negative and sizable longitudinal double-spin asymmetry A(pi)(LL) for pi(0) production at moderate transverse momentum p( perpendicular ) approximately 1-4 GeV and central rapidity. By means of a systematic investigation of the relevant degrees of freedom, we show that the perturbative QCD framework at leading power in p( perpendicular ) produces at best a very small negative asymmetry in this kinematic range.
View Article and Find Full Text PDF