To better understand the mechanisms at the basis of neutrophil functions during SARS-CoV-2, we studied patients with severe COVID-19 pneumonia. They had high blood proportion of degranulated neutrophils and elevated plasma levels of myeloperoxidase (MPO), elastase, and MPO-DNA complexes, which are typical markers of neutrophil extracellular traps (NET). Their neutrophils display dysfunctional mitochondria, defective oxidative burst, increased glycolysis, glycogen accumulation in the cytoplasm, and increase glycogenolysis.
View Article and Find Full Text PDFBackground: The use of cytokine-blocking agents has been proposed to modulate the inflammatory response in patients with COVID-19. Tocilizumab and anakinra were included in the local protocol as an optional treatment in critically ill patients with acute respiratory distress syndrome (ARDS) by SARS-CoV-2 infection. This cohort study evaluated the effects of therapy with cytokine blocking agents on in-hospital mortality in COVID-19 patients requiring mechanical ventilation and admitted to intensive care unit.
View Article and Find Full Text PDFStudies on the interactions between SARS-CoV-2 and humoral immunity are fundamental to elaborate effective therapies including vaccines. We used polychromatic flow cytometry, coupled with unsupervised data analysis and principal component analysis (PCA), to interrogate B cells in untreated patients with COVID-19 pneumonia. COVID-19 patients displayed normal plasma levels of the main immunoglobulin classes, of antibodies against common antigens or against antigens present in common vaccines.
View Article and Find Full Text PDFThe immune system of patients infected by SARS-CoV-2 is severely impaired. Detailed investigation of T cells and cytokine production in patients affected by COVID-19 pneumonia are urgently required. Here we show that, compared with healthy controls, COVID-19 patients' T cell compartment displays several alterations involving naïve, central memory, effector memory and terminally differentiated cells, as well as regulatory T cells and PD1CD57 exhausted T cells.
View Article and Find Full Text PDFThe pandemic caused by severe acute respiratory syndrome coronavirus 2 heavily involves all those working in a laboratory. Samples from known infected patients or donors who are considered healthy can arrive, and a colleague might be asymptomatic but able to transmit the virus. Working in a clinical laboratory is posing several safety challenges.
View Article and Find Full Text PDF