Quantum computers hold the promise of more efficient combinatorial optimization solvers, which could be game-changing for a broad range of applications. However, a bottleneck for materializing such advantages is that, in order to challenge classical algorithms in practice, mainstream approaches require a number of qubits prohibitively large for near-term hardware. Here we introduce a variational solver for MaxCut problems over binary variables using only n qubits, with tunable k > 1.
View Article and Find Full Text PDF