A series of Li(NiMnCo)O ( = Al, Mg, Zn, and Fe, = 0.06) was prepared via sol-gel method assisted by ethylene diamine tetra acetic acid as a chelating agent. A typical hexagonal α-NaFeO structure (R-3m space group) was observed for parent and doped samples as revealed by X-ray diffraction patterns.
View Article and Find Full Text PDFConversion reactions deliver much higher capacities than intercalation/deintercalation reactions of commercial Li ion batteries. However, the complex reaction pathways of conversion reactions occurring during Li uptake and release are not entirely understood, especially the irreversible capacity loss of Mn(III)-containing oxidic spinels. Here, we report for the first time on the electrochemical Li uptake and release of Co(II)Mn(III)Fe(III)O4 spinel nanoparticles and the conversion reaction mechanisms elucidated by combined operando X-ray diffraction, operando and ex-situ X-ray absorption spectroscopy, transmission electron microscopy, (7)Li NMR, and molecular dynamics simulation.
View Article and Find Full Text PDFWe studied the local structure and the Li ion dynamics in electrochemically and chemically prepared Li(4+x)Ti(5)O(12) with x = 0…5. We used magic-angle spinning (7)Li NMR on samples with different Li contents to investigate the sites that are occupied/emptied during Li insertion/removal. While the electrochemical measurements show a lithium insertion in two steps, 1D MAS NMR as a function of the lithium content shows that the overall spectral evolution observed during lithium insertion is inverted during lithium removal.
View Article and Find Full Text PDFWe studied the electrochemical insertion of Li in mechanochemically prepared Zn(2)SnO(4). The mechanism of the electrochemical reaction was investigated by using X-ray diffraction, nuclear magnetic resonance spectroscopy, and Mössbauer spectroscopy. Changes in the morphology of the Zn(2)SnO(4) particles were studied by in situ scanning electron microscopy.
View Article and Find Full Text PDF