Healthcare fraud, waste and abuse are costly problems that have huge impact on society. Traditional approaches to identify non-compliant claims rely on auditing strategies requiring trained professionals, or on machine learning methods requiring labelled data and possibly lacking interpretability. We present Clais, a collaborative artificial intelligence system for claims analysis.
View Article and Find Full Text PDFStud Health Technol Inform
June 2022
To protect vital health program funds from being paid out on services that are wasteful and inconsistent with medical practices, government healthcare insurance programs need to validate the integrity of claims submitted by providers for reimbursement. However, due the complexity of healthcare billing policies and the lack of coded rules, maintaining "integrity" is a labor-intensive task, often narrow-scope and expensive. We propose an approach that combines deep learning and an ontology to support the extraction of actionable knowledge on benefit rules from regulatory healthcare policy text.
View Article and Find Full Text PDFStud Health Technol Inform
November 2021
There is a growing trend in building deep learning patient representations from health records to obtain a comprehensive view of a patient's data for machine learning tasks. This paper proposes a reproducible approach to generate patient pathways from health records and to transform them into a machine-processable image-like structure useful for deep learning tasks. Based on this approach, we generated over a million pathways from FAIR synthetic health records and used them to train a convolutional neural network.
View Article and Find Full Text PDFStud Health Technol Inform
June 2020
Financial losses in Medicaid, from Fraud, Waste and Abuse (FWA), in the United States are estimated to be in the tens of billions of dollars each year. This results in escalating costs as well as limiting the funding available to worthy recipients of healthcare. The Centers for Medicare & Medicaid Services mandate thorough auditing, in which policy investigators manually research and interpret the policy to validate the integrity of claims submitted by providers for reimbursement, a very time-consuming process.
View Article and Find Full Text PDFSocial determinants of health (SDoH) are the complex set of circumstances in which individuals are born, or with which they live, that impact their health. Integrating SDoH into practice requires that information systems are able to identify SDoH-related concepts from charts and case notes through vocabularies or terminologies. Despite significant standardisation efforts across healthcare domains, SDoH coverage remains sparse in existing terminologies due to the broad spectrum of this domain, ranging from family relations, risk factors, to social programs and benefits, which are not consistently captured across administrative and clinical settings.
View Article and Find Full Text PDFStud Health Technol Inform
June 2018
We propose a cognitive system for patient-centric care that leverages and combines natural language processing, semantics, and learning from users over time to support care professionals working with large volumes of patient notes. The proposed methods highlight the entities embedded in the unstructured data to provide a holistic semantic view of an individual. A user-based evaluation is presented, showing consensus between the users and the system.
View Article and Find Full Text PDFStud Health Technol Inform
April 2017
Providing appropriate support for the most vulnerable individuals carries enormous societal significance and economic burden. Yet, finding the right balance between costs, estimated effectiveness and the experience of the care recipient is a daunting task that requires considering vast amount of information. We present a system that helps care teams choose the optimal combination of providers for a set of services.
View Article and Find Full Text PDFPatient-Centric Care requires comprehensive visibility into the strengths and vulnerabilities of individuals and populations. The systems involved in Patient-Centric Care are numerous and heterogeneous, span medical, behavioral and social domains and must be coordinated across government and NGO stakeholders in Health Care, Social Care and more. We present a system, based on Linked Data technologies, taking first steps in making this cross-domain information accessible and fit-for-use, using minimal structure and open vocabularies.
View Article and Find Full Text PDF