Publications by authors named "Marco Saerens"

Niche modeling is typically used to assess the effects of anthropogenic land use and climate change on species distributions and to inform spatial conservation planning. These models focus on the suitability of local biotic and abiotic conditions for a species in environmental space (E-space). Although movements also affect species occurrence, efforts to formally integrate geographic space (G-space) into niche modeling have been hindered by the lack of comprehensive theoretical frameworks.

View Article and Find Full Text PDF

This work develops a generic framework, called the bag-of-paths (BoP), for link and network data analysis. The central idea is to assign a probability distribution on the set of all paths in a network. More precisely, a Gibbs-Boltzmann distribution is defined over a bag of paths in a network, that is, on a representation that considers all paths independently.

View Article and Find Full Text PDF

This paper introduces two new closely related betweenness centrality measures based on the Randomized Shortest Paths (RSP) framework, which fill a gap between traditional network centrality measures based on shortest paths and more recent methods considering random walks or current flows. The framework defines Boltzmann probability distributions over paths of the network which focus on the shortest paths, but also take into account longer paths depending on an inverse temperature parameter. RSP's have previously proven to be useful in defining distance measures on networks.

View Article and Find Full Text PDF

The loss, fragmentation and degradation of habitat everywhere on Earth prompts increasing attention to identifying landscape features that support animal movement (corridors) or impedes it (barriers). Most algorithms used to predict corridors assume that animals move through preferred habitat either optimally (e.g.

View Article and Find Full Text PDF

This work introduces a novel nonparametric density index defined on graphs, the Sum-over-Forests (SoF) density index. It is based on a clear and intuitive idea: high-density regions in a graph are characterized by the fact that they contain a large amount of low-cost trees with high outdegrees while low-density regions contain few ones. Therefore, a Boltzmann probability distribution on the countable set of forests in the graph is defined so that large (high-cost) forests occur with a low probability while short (low-cost) forests occur with a high probability.

View Article and Find Full Text PDF

This paper proposes a simple extension of the celebrated MINIMAX algorithm used in zero-sum two-player games, called Rminimax. The Rminimax algorithm allows controlling the strength of an artificial rival by randomizing its strategy in an optimal way. In particular, the randomized shortest-path framework is applied for biasing the artificial intelligence (AI) adversary toward worse or better solutions, therefore controlling its strength.

View Article and Find Full Text PDF

Whole-slide scanners allow the digitization of an entire histological slide at very high resolution. This new acquisition technique opens a wide range of possibilities for addressing challenging image analysis problems, including the identification of tissue-based biomarkers. In this study, we use whole-slide scanner technology for imaging the proliferating activity patterns in tumor slides based on Ki67 immunohistochemistry.

View Article and Find Full Text PDF

This paper presents a survey as well as an empirical comparison and evaluation of seven kernels on graphs and two related similarity matrices, that we globally refer to as "kernels on graphs" for simplicity. They are the exponential diffusion kernel, the Laplacian exponential diffusion kernel, the von Neumann diffusion kernel, the regularized Laplacian kernel, the commute-time (or resistance-distance) kernel, the random-walk-with-restart similarity matrix, and finally, a kernel first introduced in this paper (the regularized commute-time kernel) and two kernels defined in some of our previous work and further investigated in this paper (the Markov diffusion kernel and the relative-entropy diffusion matrix). The kernel-on-graphs approach is simple and intuitive.

View Article and Find Full Text PDF

This work introduces a link-based covariance measure between the nodes of a weighted directed graph, where a cost is associated with each arc. To this end, a probability distribution on the (usually infinite) countable set of paths through the graph is defined by minimizing the total expected cost between all pairs of nodes while fixing the total relative entropy spread in the graph. This results in a Boltzmann distribution on the set of paths such that long (high-cost) paths occur with a low probability while short (low-cost) paths occur with a high probability.

View Article and Find Full Text PDF

This letter addresses the problem of designing the transition probabilities of a finite Markov chain (the policy) in order to minimize the expected cost for reaching a destination node from a source node while maintaining a fixed level of entropy spread throughout the network (the exploration). It is motivated by the following scenario. Suppose you have to route agents through a network in some optimal way, for instance, by minimizing the total travel cost-nothing particular up to now-you could use a standard shortest-path algorithm.

View Article and Find Full Text PDF

It sometimes happens (for instance in case control studies) that a classifier is trained on a data set that does not reflect the true a priori probabilities of the target classes on real-world data. This may have a negative effect on the classification accuracy obtained on the real-world data set, especially when the classifier's decisions are based on the a posteriori probabilities of class membership. Indeed, in this case, the trained classifier provides estimates of the a posteriori probabilities that are not valid for this real-world data set (they rely on the a priori probabilities of the training set).

View Article and Find Full Text PDF