Centrosomes are the major microtubule organizing centers of animal cells. Supernumerary centrosomes are a common feature of human tumors and associated with karyotype abnormalities and aggressive disease, but whether they are cause or consequence of cancer remains controversial. Here, we analyzed the consequences of centrosome amplification by generating transgenic mice in which centrosome numbers can be increased by overexpression of the structural centrosome protein STIL.
View Article and Find Full Text PDFSummary: Single-cell DNA template strand sequencing (Strand-seq) allows a range of various genomic analysis including chromosome length haplotype phasing and structural variation (SV) calling in individual cells. Here, we present MosaiCatcher v2, a standardized workflow and reference framework for single-cell SV detection using Strand-seq. This framework introduces a range of functionalities, including: an automated upstream Quality Control (QC) and assembly sub-workflow that relies on multiple genome assemblies and incorporates a multistep normalization module, integration of the single-cell nucleosome occupancy and genetic variation analysis SV functional characterization and of the ArbiGent SV genotyping modules, platform portability, as well as a user-friendly and shareable web report.
View Article and Find Full Text PDFSingle-cell DNA template strand sequencing (Strand-seq) allows a range of various genomic analysis including chromosome length haplotype phasing and structural variation (SV) calling in individual cells. Here, we present MosaiCatcher v2, a standardised workflow and reference framework for single-cell SV detection using Strand-seq. This framework introduces a range of functionalities, including: an automated upstream Quality Control (QC) and assembly sub-workflow that relies on multiple genome assemblies and incorporates a multistep normalisation module, integration of the scNOVA SV functional characterization and of the ArbiGent SV genotyping modules, platform portability, as well as a user-friendly and shareable web report.
View Article and Find Full Text PDFAnnu Rev Genomics Hum Genet
August 2022
Somatic rearrangements resulting in genomic structural variation drive malignant phenotypes by altering the expression or function of cancer genes. Pan-cancer studies have revealed that structural variants (SVs) are the predominant class of driver mutation in most cancer types, but because they are difficult to discover, they remain understudied when compared with point mutations. This review provides an overview of the current knowledge of somatic SVs, discussing their primary roles, prevalence in different contexts, and mutational mechanisms.
View Article and Find Full Text PDFWe report a droplet microfluidic method to target and sort individual cells directly from complex microbiome samples and to prepare these cells for bulk whole-genome sequencing without cultivation. We characterize this approach by recovering bacteria spiked into human stool samples at a ratio as low as 1:250 and by successfully enriching endogenous to the level required for de novo assembly of high-quality genomes. Although microbiome strains are increasingly demanded for biomedical applications, a vast majority of species and strains are uncultivated and without reference genomes.
View Article and Find Full Text PDFGenes Chromosomes Cancer
June 2019
Chromosomal instability is one of the hallmarks of cancer and caused by chromosome missegregation during mitosis, a process frequently associated with micronucleus formation. Micronuclei are formed when chromosomes fail to join a daughter nucleus during cell division and are surrounded by their own nuclear membrane. Although it has been commonly assumed that the gain or loss of specific chromosomes is random during compromised cell division, recent data suggest that the size of chromosomes can impact on chromosome segregation fidelity.
View Article and Find Full Text PDFChromosomal instability is a hallmark of cancer and correlates with the presence of extra centrosomes, which originate from centriole overduplication. Overduplicated centrioles lead to the formation of centriole rosettes, which mature into supernumerary centrosomes in the subsequent cell cycle. While extra centrosomes promote chromosome missegregation by clustering into pseudo-bipolar spindles, the contribution of centriole rosettes to chromosome missegregation is unknown.
View Article and Find Full Text PDFCentrosomes, the main microtubule-organizing centers in most animal cells, are of crucial importance for the assembly of a bipolar mitotic spindle and subsequent faithful segregation of chromosomes into two daughter cells. Centrosome abnormalities can be found in virtually all cancer types and have been linked to chromosomal instability (CIN) and tumorigenesis. Although our knowledge on centrosome structure, replication, and amplification has greatly increased within recent years, still only very little is known on nature, causes, and consequences of centrosome aberrations in primary tumor tissues.
View Article and Find Full Text PDFTimely and accurate assembly of the mitotic spindle is critical for the faithful segregation of chromosomes, and centrosome separation is a key step in this process. The timing of centrosome separation varies dramatically between cell types; however, the mechanisms responsible for these differences and its significance are unclear. Here, we show that activation of epidermal growth factor receptor (EGFR) signaling determines the timing of centrosome separation.
View Article and Find Full Text PDF