Publications by authors named "Marco Polin"

Article Synopsis
  • * This study investigates the growth dynamics of a plant-promoting filamentous fungus using a microfluidic chamber, revealing synchronized growth oscillations occurring every 3 hours, particularly during sporulation.
  • * The findings suggest that growth synchronization can be modeled using the nearest neighbour Kuramoto model, which could inform future research on fungal communication methods and help in managing soil and plant health.
View Article and Find Full Text PDF

Climate warming is causing shifts in reproductive phenology, a crucial life history trait determining offspring survival and population productivity. Evaluating these impacts on exploited marine resources is essential for implementing adaptive measures from an ecosystemic approach. This study introduces a statistical model designed to predict fish spawning phenology from sea surface temperature profiles, integrating mortality-corrected hatch-date distributions inferred from fishery-dependent samplings, along with the gonadosomatic index of adult individuals.

View Article and Find Full Text PDF

Self-organisation is the spontaneous emergence of spatio-temporal structures and patterns from the interaction of smaller individual units. Examples are found across many scales in very different systems and scientific disciplines, from physics, materials science and robotics to biology, geophysics and astronomy. Recent research has highlighted how self-organisation can be both mediated and controlled by confinement.

View Article and Find Full Text PDF

Understanding the out-of-equilibrium properties of noisy microscale systems and the extent to which they can be modulated externally, is a crucial scientific and technological challenge. It holds the promise to unlock disruptive new technologies ranging from targeted delivery of chemicals within the body to directed assembly of new materials. Here we focus on how active matter can be harnessed to transport passive microscopic systems in a statistically predictable way.

View Article and Find Full Text PDF

Plastics, when entering the environment, are immediately colonised by microorganisms. This modifies their physico-chemical properties as well as their transport and fate in natural ecosystems, but whom pioneers this colonisation in marine ecosystems? Previous studies have focused on microbial communities that develop on plastics after relatively long incubation periods (i.e.

View Article and Find Full Text PDF

How oligotrophic marine cyanobacteria position themselves in the water column is currently unknown. The current paradigm is that these organisms avoid sinking due to their reduced size and passive drift within currents. Here, we show that one in four picocyanobacteria encode a type IV pilus which allows these organisms to increase drag and remain suspended at optimal positions in the water column, as well as evade predation by grazers.

View Article and Find Full Text PDF

Self-organized multicellular behaviors enable cells to adapt and tolerate stressors to a greater degree than isolated cells. However, whether and how cellular communities alter their collective behaviors adaptively upon exposure to stress is largely unclear. Here, we investigate this question using , a model system for bacterial multicellularity.

View Article and Find Full Text PDF

The plasma membrane and the underlying cytoskeletal cortex constitute active platforms for a variety of cellular processes. Recent work has shown that the remodeling acto-myosin network modifies local membrane organization, but the molecular details are only partly understood because of difficulties with experimentally accessing the relevant time and length scales. Here, we use interferometric scattering microscopy to investigate a minimal acto-myosin network linked to a supported lipid bilayer membrane.

View Article and Find Full Text PDF

Despite their importance in many biological, ecological, and physical processes, microorganismal fluid flows under tight confinement have not been investigated experimentally. Strong screening of Stokelets in this geometry suggests that the flow fields of different microorganisms should be universally dominated by the 2D source dipole from the swimmer's finite-size body. Confinement therefore is poised to collapse differences across microorganisms, which are instead well established in bulk.

View Article and Find Full Text PDF

Microorganismal motility is often characterized by complex responses to environmental physico-chemical stimuli. Although the biological basis of these responses is often not well understood, their exploitation already promises novel avenues to directly control the motion of living active matter at both the individual and collective level. Here we leverage the phototactic ability of the model microalga Chlamydomonas reinhardtii to precisely control the timing and position of localized cell photoaccumulation, leading to the controlled development of isolated bioconvective plumes.

View Article and Find Full Text PDF

Despite evidence for a hydrodynamic origin of flagellar synchronization between different eukaryotic cells, recent experiments have shown that in single multi-flagellated organisms, coordination hinges instead on direct basal body connections. The mechanism by which these connections lead to coordination, however, is currently not understood. Here, we focus on the model biflagellate , and propose a minimal model for the synchronization of its two flagella as a result of both hydrodynamic and direct mechanical coupling.

View Article and Find Full Text PDF

Phototaxis is an important reaction to light displayed by a wide range of motile microorganisms. Flagellated eukaryotic microalgae in particular, like the model organism Chlamydomonas reinhardtii, steer either towards or away from light by a rapid and precisely timed modulation of their flagellar activity. Cell steering, however, is only the beginning of a much longer process which ultimately allows cells to determine their light exposure history.

View Article and Find Full Text PDF
Article Synopsis
  • Eukaryotic cilia and flagella can create coordinated movements called metachronal waves, but achieving synchronized motion is complex due to long-range interactions.
  • Researchers studied a simple model of cilia on a surface to see how changing their distance from the wall affects their motion patterns.
  • The system can shift from a traveling wave to stable patterns or ones with periodic defects, showing behaviors similar to chimera states during these transitions.
View Article and Find Full Text PDF

The incessant activity of swimming microorganisms has a direct physical effect on surrounding microscopic objects, leading to enhanced diffusion far beyond the level of Brownian motion with possible influences on the spatial distribution of non-motile planktonic species and particulate drifters. Here we study in detail the effect of eukaryotic flagellates, represented by the green microalga Chlamydomonas reinhardtii, on microparticles. Macro- and microscopic experiments reveal that microorganism-colloid interactions are dominated by rare close encounters leading to large displacements through direct entrainment.

View Article and Find Full Text PDF

Interactions between microorganisms and solid boundaries play an important role in biological processes, such as egg fertilization, biofilm formation, and soil colonization, where microswimmers move within a structured environment. Despite recent efforts to understand their origin, it is not clear whether these interactions can be understood as being fundamentally of hydrodynamic origin or hinging on the swimmer's direct contact with the obstacle. Using a combination of experiments and simulations, here we study in detail the interaction of the biflagellate green alga Chlamydomonas reinhardtii, widely used as a model puller microorganism, with convex obstacles, a geometry ideally suited to highlight the different roles of steric and hydrodynamic effects.

View Article and Find Full Text PDF

Groups of eukaryotic cilia and flagella are capable of coordinating their beating over large scales, routinely exhibiting collective dynamics in the form of metachronal waves. The origin of this behavior--possibly influenced by both mechanical interactions and direct biological regulation--is poorly understood, in large part due to a lack of quantitative experimental studies. Here we characterize in detail flagellar coordination on the surface of the multicellular alga Volvox carteri, an emerging model organism for flagellar dynamics.

View Article and Find Full Text PDF

Flows generated by ensembles of flagella are crucial to development, motility and sensing, but the mechanisms behind this striking coordination remain unclear. We present novel experiments in which two micropipette-held somatic cells of Volvox carteri, with distinct intrinsic beating frequencies, are studied by high-speed imaging as a function of their separation and orientation. Analysis of time series shows that the interflagellar coupling, constrained by lack of connections between cells to be hydrodynamical, exhibits a spatial dependence consistent with theory.

View Article and Find Full Text PDF

Groups of beating flagella or cilia often synchronize so that neighboring filaments have identical frequencies and phases. A prime example is provided by the unicellular biflagellate Chlamydomonas reinhardtii, which typically displays synchronous in-phase beating in a low-Reynolds number version of breaststroke swimming. We report the discovery that ptx1, a flagellar-dominance mutant of C.

View Article and Find Full Text PDF

From unicellular ciliates to the respiratory epithelium, carpets of cilia display metachronal waves, long-wavelength phase modulations of the beating cycles, which theory suggests may arise from hydrodynamic coupling. Experiments have been limited by a lack of organisms suitable for systematic study of flagella and the flows they create. Using time-resolved particle image velocimetry, we report the discovery of metachronal waves on the surface of the colonial alga Volvox carteri, whose large size and ease of visualization make it an ideal model organism for these studies.

View Article and Find Full Text PDF

Interactions between swimming cells and surfaces are essential to many microbiological processes, from bacterial biofilm formation to human fertilization. However, despite their fundamental importance, relatively little is known about the physical mechanisms that govern the scattering of flagellated or ciliated cells from solid surfaces. A more detailed understanding of these interactions promises not only new biological insights into structure and dynamics of flagella and cilia but may also lead to new microfluidic techniques for controlling cell motility and microbial locomotion, with potential applications ranging from diagnostic tools to therapeutic protein synthesis and photosynthetic biofuel production.

View Article and Find Full Text PDF

A fundamental issue in the biology of eukaryotic flagella is the origin of synchronized beating observed in tissues and organisms containing multiple flagella. Recent studies of the biflagellate unicellular alga Chlamydomonas reinhardtii provided the first evidence that the interflagellar coupling responsible for synchronization is of hydrodynamic origin. To investigate this mechanism in detail, we study here synchronization in Chlamydomonas as its flagella slowly regrow after mechanically induced self-scission.

View Article and Find Full Text PDF

Swimming microorganisms create flows that influence their mutual interactions and modify the rheology of their suspensions. While extensively studied theoretically, these flows have not been measured in detail around any freely-swimming microorganism. We report such measurements for the microphytes Volvox carteri and Chlamydomonas reinhardtii.

View Article and Find Full Text PDF

It has long been conjectured that hydrodynamic interactions between beating eukaryotic flagella underlie their ubiquitous forms of synchronization; yet there has been no experimental test of this connection. The biflagellate alga Chlamydomonas is a simple model for such studies, as its two flagella are representative of those most commonly found in eukaryotes. Using micromanipulation and high-speed imaging, we show that the flagella of a C.

View Article and Find Full Text PDF