Publications by authors named "Marco Paglione"

Associations between indoor air pollution from fine particulate matter (PM with aerodynamic diameter d < 2.5 μm) and human health are poorly understood. Here, we analyse the concentration-response curves for fine and ultrafine PM, the gene expression, and the methylation patterns in human bronchial epithelial cells (BEAS-2B) exposed at the air-liquid interface (ALI) within a classroom in downtown Rome.

View Article and Find Full Text PDF

Particulate Matter (PM) is a complex and heterogeneous mixture of atmospheric particles recognized as a threat to human health. Oxidative Potential (OP) measurement is a promising and integrative method for estimating PM-induced health impacts since it is recognized as more closely associated with adverse health effects than ordinarily used PM mass concentrations. OP measurements could be introduced in the air quality monitoring, along with the parameters currently evaluated.

View Article and Find Full Text PDF

Pellet combustion in residential heating stoves has increased globally during the last decade. Despite their high combustion efficiency, the widespread use of pellet stoves is expected to adversely impact air quality. The atmospheric aging of pellet emissions has received even less attention, focusing mainly on daytime conditions, while the degree to which pellet emissions undergo night-time aging as well as the role of relative humidity remain poorly understood.

View Article and Find Full Text PDF

Exposures to fine particulate matter (PM[Formula: see text]) have been associated with health impacts, but the understanding of the PM[Formula: see text] concentration-response (PM[Formula: see text]-CR) relationships, especially at low PM[Formula: see text], remains incomplete. Here, we present novel data using a methodology to mimic lung exposure to ambient air (2[Formula: see text] 60 [Formula: see text]g m[Formula: see text]), with minimized sampling artifacts for nanoparticles. A reference model (Air Liquid Interface cultures of human bronchial epithelial cells, BEAS-2B) was used for aerosol exposure.

View Article and Find Full Text PDF

Background: Outdoor air pollution is supposed to influence the course of bronchiolitis, but the evidence is limited. The present study aimed at evaluating the role of outdoor air pollutants on hospitalization for bronchiolitis.

Methods: Infants aged ≤12 months referred for bronchiolitis to our Pediatric Emergency Department in Bologna, Italy, from 1 October 2011 to 16 March 2020 (nine epidemic seasons) were retrospectively included.

View Article and Find Full Text PDF

Particulate matter from biomass burning emissions affects air quality, ecosystems and climate; however, quantifying these effects requires that the connection between primary emissions and secondary aerosol production is firmly established. We performed atmospheric simulation chamber experiments on the chemical oxidation of residential biomass burning emissions under dark conditions. Biomass burning organic aerosol was found to age under dark conditions, with its oxygen-to-carbon ratio increasing by 7-34% and producing 1-38 μg m of secondary organic aerosol (5-80% increase over the fresh organic aerosol) after 30 min of exposure to NO radicals in the chamber (corresponding to 1-3 h of exposure to typical nighttime NO radical concentrations in an urban environment).

View Article and Find Full Text PDF

The current understanding of the impact of natural cloud condensation nuclei (CCN) variability on cloud properties in marine air is low, thus contributing to climate prediction uncertainty. By analyzing cloud remote sensing observations (2009-2015) at Mace Head (west coast of Ireland), we show the oceanic biota impact on the microphysical properties of stratiform clouds over the Northeast Atlantic Ocean. During spring to summer (seasons of enhanced oceanic biological activity), clouds typically host a higher number of smaller droplets resulting from increased aerosol number concentration in the CCN relevant-size range.

View Article and Find Full Text PDF

Within the Southern Ocean, the greatest warming is occurring on the Antarctic Peninsula (AP) where clear cryospheric and biological consequences are being observed. Antarctic coastal systems harbour a high diversity of marine and terrestrial ecosystems heavily influenced by Antarctic seaweeds (benthonic macroalgae) and bird colonies (mainly penguins). Primary sea spray aerosols (SSA) formed by the outburst of bubbles via the sea-surface microlayer depend on the organic composition of the sea water surface.

View Article and Find Full Text PDF

Background: Lockdown measures during the SARS-CoV-2 pandemic determined radical changes to behavioral and social habits, that were reflected by a reduction in the transmission of respiratory pathogens and in anthropogenic atmospheric emissions.

Objective: This ecological study aims to provide a descriptive evaluation on how restrictive measures during the SARS-CoV-2 pandemic impacted Pediatric Emergency Department (PED) referrals for asthma exacerbations, and their potentially associated environmental triggers in Bologna, a densely populated urban area in Northern Italy.

Methods: Files of children evaluated for acute asthma during 2015 to 2020 at the PED of Sant'Orsola University Hospital of Bologna were retrospectively reviewed.

View Article and Find Full Text PDF

Aerosol behavior over the Himalayas plays an important role in the regional climate of South Asia. Previous studies at high-altitude observatories have provided evidence of the impact of long-range transport of pollutants from the Indo-Gangetic Plain (IGP). However, little information exists for the valley areas in the high Himalayas where significant local anthropogenic emissions can act as additional sources of short-living climate forcers and pollutants.

View Article and Find Full Text PDF

Acidity profoundly affects almost every aspect that shapes the composition of ambient particles and their environmental impact. Thermodynamic analysis of gas-particle composition datasets offers robust estimates of acidity, but they are not available for long periods of time. Fog composition datasets, however, are available for many decades; we develop a thermodynamic analysis to estimate the ammonia in equilibrium with fog water and to infer the pre-fog aerosol pH starting from fog chemical composition and pH.

View Article and Find Full Text PDF

Oxidized organic aerosol (OOA) is a major component of ambient particulate matter, substantially impacting climate, human health, and ecosystems. OOA is readily produced in the presence of sunlight, and requires days of photooxidation to reach the levels observed in the atmosphere. High concentrations of OOA are thus expected in the summer; however, our current mechanistic understanding fails to explain elevated OOA during wintertime periods of low photochemical activity that coincide with periods of intense biomass burning.

View Article and Find Full Text PDF

Critical research is needed regarding harmful algal blooms threatening ecosystem and human health, especially through respiratory routes. Additional complexity comes from the poorly understood factors involved in the physical production of marine aerosols coupled with complex biogeochemical processes at ocean surfaces. Here-by using a marine aerosol generation tank-five bubble-bursting experiments (with contrasting incubation times and, likely, physiological microalgal states) were run to investigate simultaneously the concentrations of the toxins, synthesized by a natural cf.

View Article and Find Full Text PDF

Sulfur compounds are an important constituent of particulate matter, with impacts on climate and public health. While most sulfur observed in particulate matter has been assumed to be sulfate, laboratory experiments reveal that hydroxymethanesulfonate (HMS), an adduct formed by aqueous phase chemical reaction of dissolved HCHO and SO, may be easily misinterpreted in measurements as sulfate. Here we present observational and modeling evidence for a ubiquitous global presence of HMS.

View Article and Find Full Text PDF

We present shipborne measurements of size-resolved concentrations of aerosol components across ocean waters next to the Antarctic Peninsula, South Orkney Islands, and South Georgia Island, evidencing aerosol features associated with distinct eco-regions. Nonmethanesulfonic acid Water-Soluble Organic Matter (WSOM) represented 6-8% and 11-22% of the aerosol PM mass originated in open ocean (OO) and sea ice (SI) regions, respectively. Other major components included sea salt (86-88% OO, 24-27% SI), non sea salt sulfate (3-4% OO, 35-40% SI), and MSA (1-2% OO, 11-12% SI).

View Article and Find Full Text PDF

Climate warming affects the development and distribution of sea ice, but at present the evidence of polar ecosystem feedbacks on climate through changes in the atmosphere is sparse. By means of synergistic atmospheric and oceanic measurements in the Southern Ocean near Antarctica, we present evidence that the microbiota of sea ice and sea ice-influenced ocean are a previously unknown significant source of atmospheric organic nitrogen, including low molecular weight alkyl-amines. Given the keystone role of nitrogen compounds in aerosol formation, growth and neutralization, our findings call for greater chemical and source diversity in the modelling efforts linking the marine ecosystem to aerosol-mediated climate effects in the Southern Ocean.

View Article and Find Full Text PDF

An interlaboratory comparison was performed to evaluate the analytical methods for quantification of anhydrosugars - levoglucosan, mannosan, galactosan - and biosugars - arabitol, glucose and mannitol - in atmospheric aerosol. The performance of 10 laboratories in Italy currently involved in such analyses was investigated on twenty-six PM (particulate matter) ambient filters, three synthetic PM filters and three aqueous standard solutions. An acceptable interlaboratory variability was found, determined as the mean relative standard deviation (RSD%) of the results from the participating laboratories, with the mean RSD% values ranging from 25% to 46% and decreasing with increasing sugar concentration.

View Article and Find Full Text PDF

The mechanisms leading to the formation of secondary organic aerosol (SOA) are an important subject of ongoing research for both air quality and climate. Recent laboratory experiments suggest that reactions taking place in the atmospheric liquid phase represent a potentially significant source of SOA mass. Here, we report direct ambient observations of SOA mass formation from processing of biomass-burning emissions in the aqueous phase.

View Article and Find Full Text PDF

The study of organic nitrogen gained importance in recent decades due to its links with acid rain, pollution, and eutrophication. In this study, aerosol and fog water samples collected from two sites in Italy during November 2011 were analyzed to characterize their organic nitrogen content. Organic nitrogen contributed 19-25% of the total soluble nitrogen in the aerosol and around 13% in fog water.

View Article and Find Full Text PDF