Learning how to reach a reward over long series of actions is a remarkable capability of humans, and potentially guided by multiple parallel learning modules. Current brain imaging of learning modules is limited by (i) simple experimental paradigms, (ii) entanglement of brain signals of different learning modules, and (iii) a limited number of computational models considered as candidates for explaining behavior. Here, we address these three limitations and (i) introduce a complex sequential decision making task with surprising events that allows us to (ii) dissociate correlates of reward prediction errors from those of surprise in functional magnetic resonance imaging (fMRI); and (iii) we test behavior against a large repertoire of model-free, model-based, and hybrid reinforcement learning algorithms, including a novel surprise-modulated actor-critic algorithm.
View Article and Find Full Text PDFClassic reinforcement learning (RL) theories cannot explain human behavior in the absence of external reward or when the environment changes. Here, we employ a deep sequential decision-making paradigm with sparse reward and abrupt environmental changes. To explain the behavior of human participants in these environments, we show that RL theories need to include surprise and novelty, each with a distinct role.
View Article and Find Full Text PDFIn many daily tasks, we make multiple decisions before reaching a goal. In order to learn such sequences of decisions, a mechanism to link earlier actions to later reward is necessary. Reinforcement learning (RL) theory suggests two classes of algorithms solving this credit assignment problem: In classic temporal-difference learning, earlier actions receive reward information only after multiple repetitions of the task, whereas models with eligibility traces reinforce entire sequences of actions from a single experience (one-shot).
View Article and Find Full Text PDF