Publications by authors named "Marco P C Marques"

Lignocellulosic biomass is one of the most abundant bioresources on Earth. Over recent decades, various valorisation techniques have been developed to produce value-added products from the cellulosic and hemicellulosic fractions of this biomass. Lignin is the third major component accounting for 10-30% (w/w).

View Article and Find Full Text PDF

dsRNA is a product related impurity produced during the mRNA manufacturing process. The established immuno-based detection methods lack the flexibility and speed required to be applied throughout the manufacturing process. The RP-HPLC method developed outperforms these in terms of precision, broader detection range, LOD and LOQ, as well as in output variance.

View Article and Find Full Text PDF

Maximizing product quality attributes by optimizing process parameters and performance attributes is a crucial aspect of bioprocess chromatography process design. Process parameters include but are not limited to bed height, eluate cut points, and elution pH. An under-characterized chromatography process parameter for protein A chromatography is process temperature.

View Article and Find Full Text PDF

DNA origami is an emerging technology that can be used as a nanoscale platform in numerous applications ranging from drug delivery systems to biosensors. The DNA nanostructures are assembled from large single-stranded DNA (ssDNA) scaffolds, ranging from hundreds to thousands of nucleotides and from short staple strands. Scaffolds are usually obtained by asymmetric PCR (aPCR) or infection/transformation with phages or phagemids.

View Article and Find Full Text PDF

The manufacturing of mRNA vaccines relies on cell-free based systems that are easily scalable and flexible compared with the traditional vaccine manufacturing processes. Typically, standard processes yield 2 to 5 g L of mRNA, with recent process optimisations increasing yields to 12 g L. However, increasing yields can lead to an increase in the production of unwanted by-products, namely dsRNA.

View Article and Find Full Text PDF

Tumor spheroid models have garnered significant attention in recent years as they can efficiently mimic in vivo models, and in addition, they offer a more controlled and reproducible environment for evaluating the efficacy of cancer drugs. In this study, we present the design and fabrication of a micromold template to form multicellular spheroids in a high-throughput and controlled-sized fashion. Briefly, polydimethylsiloxane-based micromolds at varying sizes and geometry were fabricated via soft lithography using 3D-printed molds as negative templates.

View Article and Find Full Text PDF

Small-scale devices are routinely used as low-cost miniaturized bioreactors due to the large number of experiments that can be conducted simultaneously under similar conditions and replicate all functions of bench-scale reactors at dramatically smaller volumes. Microtiter plates, due to the standard footprint, can be integrated with liquid handling systems and associated equipment, expanding considerably their application and use. However, care has to be taken to operate the microtiter plates in optimized mixing and oxygen transfer conditions, preventing medium evaporation in prolonged experiment runs.

View Article and Find Full Text PDF

Messenger RNA (mRNA) vaccines are a new alternative to conventional vaccines with a prominent role in infectious disease control. These vaccines are produced in in vitro transcription (IVT) reactions, catalyzed by RNA polymerase in cascade reactions. To ensure an efficient and cost-effective manufacturing process, essential for a large-scale production and effective vaccine supply chain, the IVT reaction needs to be optimized.

View Article and Find Full Text PDF

Vaccines are one of the most important tools in public health and play an important role in infectious diseases control. Owing to its precision, safe profile and flexible manufacturing, mRNA vaccines are reaching the stoplight as a new alternative to conventional vaccines. In fact, mRNA vaccines were the technology of choice for many companies to combat the Covid-19 pandemic, and it was the first technology to be approved in both United States and in Europe Union as a prophylactic treatment.

View Article and Find Full Text PDF

Flocculation is a key purification step in cell-based processes for the food and pharmaceutical industry where the removal of cells and cellular debris is aided by adding flocculating agents. However, finding the best suited flocculating agent and optimal conditions to achieve rapid and effective flocculation is a non-trivial task. In conventional analytical systems, turbulent mixing creates a dynamic equilibrium between floc growth and breakage, constraining the determination of floc formation rates.

View Article and Find Full Text PDF

Poly(methyl methacrylate) (PMMA) microfluidic devices have become promising platforms for a wide range of applications. Here we report a simple method for immobilising histidine-tagged enzymes suitable for PMMA microfluidic devices. The 1-step-immobilisation described is based on the affinity of the His-tag/Ni-NTA interaction and does not require prior amination of the PMMA surface, unlike many existing protocols.

View Article and Find Full Text PDF

Automated microfluidic devices are a promising route towards a point-of-care autologous cell therapy. The initial steps of induced pluripotent stem cell (iPSC) derivation involve transfection and long term cell culture. Integration of these steps would help reduce the cost and footprint of micro-scale devices with applications in cell reprogramming or gene correction.

View Article and Find Full Text PDF

Rapid biocatalytic process development and intensification continues to be challenging with currently available methods. Chiral amino-alcohols are of particular interest as they represent key industrial synthons for the production of complex molecules and optically pure pharmaceuticals. (2S,3R)-2-amino-1,3,4-butanetriol (ABT), a building block for the synthesis of protease inhibitors and detoxifying agents, can be synthesized from simple, non-chiral starting materials, by coupling a transketolase- and a transaminase-catalyzed reaction.

View Article and Find Full Text PDF

The quantification of key variables such as oxygen, pH, carbon dioxide, glucose, and temperature provides essential information for biological and biotechnological applications and their development. Microfluidic devices offer an opportunity to accelerate research and development in these areas due to their small scale, and the fine control over the microenvironment, provided that these key variables can be measured. Optical sensors are well-suited for this task.

View Article and Find Full Text PDF

Microtiter plates are routinely used as low-cost miniaturized bioreactors due to the large number of experiments that can be conducted simultaneously under similar conditions and replicate all functions of bench-scale reactors at dramatically smaller volumes. These plates, due to the standard footprint, can be integrated with liquid-handling systems and associated equipment expanding considerably their application and use. However, care has to be taken to operate the microtiter plates in optimized mixing and oxygen transfer conditions, preventing medium evaporation in prolonged experiment runs.

View Article and Find Full Text PDF

The continuous production of high value or difficult to synthesize products is of increasing interest to the pharmaceutical industry. Cascading reaction systems have already been employed for chemical synthesis with great success, allowing a quick change in reaction conditions and addition of new reactants as well as removal of side products. A cascading system can remove the need for isolating unstable intermediates, increasing the yield of a synthetic pathway.

View Article and Find Full Text PDF

Monitoring and control of pH is essential for the control of reaction conditions and reaction progress for any biocatalytic or biotechnological process. Microfluidic enzymatic reactors are increasingly proposed for process development, however typically lack instrumentation, such as pH monitoring. We present a microfluidic side-entry reactor (μSER) and demonstrate for the first time real-time pH monitoring of the progression of an enzymatic reaction in a microfluidic reactor as a first step towards achieving pH control.

View Article and Find Full Text PDF

Bacterial cells are known to adapt to challenging environmental conditions such as osmotic stress. However, most of the work done in this field describes the adaptation of growing populations where the new generations acquire traits that improve their ability to survive. In the present study, the responses of Rhodococcus erythropolis cells within the first 30 min after exposure to osmotic stress caused by sodium chloride were studied.

View Article and Find Full Text PDF

Iron is the most abundant chemical element on Earth but its most common oxidation state is Fe(III) which presents a very low solubility under physiological conditions. During evolution, micro-organisms have developed sound strategies to acquire iron from both the environment and superior organisms, including direct uptake of iron ions from exogenous iron/heme sources and the synthesis of specialized Fe(III) chelators called siderophores. The present review paper aims at presenting and discussing the latest achievements in siderophore isolation and production, as well as novel applications of these molecules in therapies against iron-related diseases and in vaccines, and their application as antimicrobial agents and biosensors.

View Article and Find Full Text PDF

The use of miniaturized devices for fastening bioprocess development, even up to production scale, has expanded rapidly, a feature clearly noticeable in recent years. This matter was reviewed in a recent past, but several developments have occurred since. These will be addressed in the present work, which will provide some insight on the use of microfluidic /microstructured reactors and of micro-scale downstream processing as well, therefore broadening the scope of the review.

View Article and Find Full Text PDF

The use of microchannel reactor based technologies within the scope of bioprocesses as process intensification and production platforms is gaining momentum. Such trend can be ascribed a particular set of characteristics of microchannel reactors, namely the enhanced mass and heat transfer, combined with easier handling and smaller volumes required, as compared to traditional reactors. In the present work, a continuous production process of 4-cholesten-3-one by the enzymatic oxidation of cholesterol without the formation of any by-product was assessed.

View Article and Find Full Text PDF

The dawn of the new millennium saw a trend towards the dedicated use of microfluidic devices for process intensification in biotechnology. As the last decade went by, it became evident that this pattern was not a short-lived fad, since the deliverables related to this field of research have been consistently piling-up. The application of process intensification in biotechnology is therefore seemingly catching up with the trend already observed in the chemical engineering area, where the use of microfluidic devices has already been upgraded to production scale.

View Article and Find Full Text PDF

The present work aims to provide the basic characterization of sol-gel immobilized inulinase, a biocatalyst configuration yet unexploited, using as model system the hydrolysis of inulin to fructose. Porous xerogel particles with dimensions in slight excess of 10 μm were obtained, yielding an immobilization efficiency of roughly 80%. The temperature- and pH-activity profiles displayed a broader bell-shaped pattern as a result of immobilization.

View Article and Find Full Text PDF

The use of whole cells is becoming a more common approach in pharmaceutical and agrochemical industries in order to obtain pure compounds with fewer production steps, higher yields, and cleaner processes, as compared to those achieved with traditional strategies. Whole cells are often used as enzymes pools, in particular when multi-step reactions and/or co-factor regeneration are envisaged. Nonetheless, published information on the scale-up of such systems both in aqueous and in two-phase aqueous-organic systems is relatively scarce.

View Article and Find Full Text PDF

The microwell-scale approach is widely used for screening purposes and one-pot biotransformations, but it has seldom been applied to complex whole cell multistep bioconversions, requiring prolonged incubation periods. The present study aims to contribute to filling this gap. The side-chain cleavage of sitosterol to androstenedione (AD) with Mycobacterium sp.

View Article and Find Full Text PDF