Oceans' absorption of human-related CO emissions leads to a process called ocean acidification (OA), consisting of the decrease of the seawater pH with negative consequences for many marine organisms. In this study, we investigate the microbial community of two species of polychaetes found in naturally acidified CO vents: the nereid Platynereis massiliensis complex and the syllid Syllis prolifera. Animals were collected in the CO vents of Castello Aragonese (Gulf of Naples, Ischia, Italy) in three zones at decreasing pH.
View Article and Find Full Text PDFBackground: is a canopy-forming brown macroalga that thrives in the intertidal and subtidal habitats of the warm-temperate Mediterranean Sea, which is particularly exposed to environmental changes due to its peculiar geographical location and exposure to both global and local stressors. Testing whether this species is featured by specific functional, eco-physiological and biochemical traits allowing an efficient use of habitat resources and adaptation to environmental stress, and whether this potential might change with population growth, is essential for predicting the performance of the algae under different environmental abiotic variables (, temperature, nutrient availability, light) and biotic interactions (such as grazing).
Methods: Young (juveniles) and adult thalli of were sampled in the winter season from the Venice Lagoon, Italy, featured by high environmental changes (temperature, salinity) and analyzed for thallus dry matter content (TDMC), photosynthetic activity, photosynthetic pigment and protein content, and antioxidant capacity to assess if thallus age may be considered a significant driver in determining the ecological responses of this species to environmental changes.
Alterations in seawater chemistry posed by acidification may lead to immunological and antioxidant defence impairment in sea urchins, with differences among local populations. Here, we analyzed the effects of reduced pH on Paracentrotus lividus, with a multibiomarker approach, and the possible intraspecific variations in sea urchin responses. Two groups of animals with different ecological histories (i.
View Article and Find Full Text PDFCoastal waters face significant anthropogenic stress, particularly from tourism, exacerbating pollution, especially in areas like touristic islands. Ischia, the largest island in the Gulf of Naples and part of the Regno di Nettuno Marine Protected Area, suffers from pollution due to tourism and maritime traffic. During the initial SARS-CoV-2 lockdown from March to June 2020, Ischia was isolated, providing a unique opportunity to study pollutant release and its impact on coastal ecosystems.
View Article and Find Full Text PDFWe investigated the health conditions of the Mediterranean mussel Mytilus galloprovincialis recruited in the CO vents system of Castello Aragonese at Ischia Island (Mediterranean Sea). Individuals of M. galloprovincialis were sampled in three sites along the pH gradient (8.
View Article and Find Full Text PDFPatella caerulea (Linnaeus, 1758) is a mollusc limpet species of the class Gastropoda. Endemic to the Mediterranean Sea, it is considered a keystone species due to its primary role in structuring and regulating the ecological balance of tidal and subtidal habitats. It is currently being used as a bioindicator to assess the environmental quality of coastal marine waters and as a model species to understand adaptation to ocean acidification.
View Article and Find Full Text PDFBisphenol A is recognized as an endocrine disruptor that can affect several biological processes in marine species. Consequently, its use has been restricted and it has been replaced with other similar compounds named bisphenol A analogues (BPA analogues). BPA analogues are speculatively considered safer compounds than BPA and their usage is increasing with a consequent higher environmental release.
View Article and Find Full Text PDFSeawater warming and marine heatwaves (MHWs) have a major role on the fragmentation and loss of coastal marine habitats. Understanding the resilience and potential for adaptation of marine habitat forming species to ocean warming becomes pivotal for predicting future changes, improving present conservation and restoration strategies. In this study, a thermo-tolerance experiment was conducted to investigate the physiological effects of short vs long MHWs occurring at different timing on recruits of Gongolaria barbata, a canopy-forming species widespread in the Mediterranean Sea.
View Article and Find Full Text PDFThe process of site selection and spatial planning has received scarce attention in the scientific literature dealing with marine restoration, suggesting the need to better address how spatial planning tools could guide restoration interventions. In this study, for the first time, the consequences of adopting different restoration targets and criteria on spatial restoration prioritization have been assessed at a regional scale, including the consideration of climate changes. We applied the decision-support tool Marxan, widely used in systematic conservation planning on Mediterranean macroalgal forests.
View Article and Find Full Text PDFThis study aimed to assess the combined effects of ocean acidification (OA) and pollution to the polychaete Syllis prolifera inhabiting the CO vent system of the Castello Aragonese (Ischia Island, Italy). We investigated the basal activities of antioxidant enzymes in organisms from the acidified site and from an ambient-pH control site in two different periods of the year. Results showed a limited influence of acidified conditions on the functionality of the antioxidant system.
View Article and Find Full Text PDFAs the ocean warms, the thermal tolerance of marine invertebrates is key to determining their distributional change, where acclimation to low pH may impact the thermal range of optimal development. We compared thermal tolerance of progeny from a low pH-acclimated sea urchin () population from the CO vents of Ischia (Italy) and a nearby population living at ambient pH. The percentages of normally developing gastrulae and two-armed larvae were determined across 10 temperatures representing present and future temperature conditions (16-34°C).
View Article and Find Full Text PDFAnthropogenic stressors are predicted to alter biodiversity and ecosystem functioning worldwide. However, scaling up from species to ecosystem responses poses a challenge, as species and functional groups can exhibit different capacities to adapt, acclimate, and compensate under changing environments. We used a naturally acidified seagrass ecosystem (the endemic Mediterranean Posidonia oceanica) as a model system to examine how ocean acidification (OA) modifies the community structure and functioning of plant detritivores, which play vital roles in the coastal nutrient cycling and food web dynamics.
View Article and Find Full Text PDFOcean Acidification (OA), due to rising atmospheric CO, can affect the seagrass holobiont by changing the plant's ecophysiology and the composition and functioning of its epiphytic community. However, our knowledge of the role of epiphytes in the productivity of the seagrass holobiont in response to environmental changes is still very limited. CO vents off Ischia Island (Italy) naturally reduce seawater pH, allowing to investigate the adaptation of the seagrass Posidonia oceanica L.
View Article and Find Full Text PDFEnd-of-the-century predictions on carbon dioxide (CO) driven ocean acidification and the continuous leakage of pesticides from inland to coastal areas are of concern for potential negative effects on marine species' early life stages which are the most vulnerable to environmental changes. Variations in seawater chemistry related to human activities may interfere with the normal development from embryo to juvenile/adult stage. However, transgenerational studies suggest that the parental generation can influence the offspring phenotype, and thus their performances, based on the environment experienced.
View Article and Find Full Text PDFCO-driven ocean acidification (OA) affects many aspects of sea urchin biology. However, even in the same species, OA effects are often not univocal due to non-uniform exposure setups or different ecological history of the experimental specimens. In the present work, two groups of adult sea urchins Paracentrotus lividus from different environments (the Lagoon of Venice and a coastal area in the Northern Adriatic Sea) were exposed to OA in a long-term exposure.
View Article and Find Full Text PDFHigh pCO habitats and their populations provide an unparalleled opportunity to assess how species may survive under future ocean acidification conditions, and help to reveal the traits that confer tolerance. Here we utilize a unique CO vent system to study the effects of exposure to elevated pCO2 on trait-shifts observed throughout natural populations of Astroides calycularis, an azooxanthellate scleractinian coral endemic to the Mediterranean. Unexpected shifts in skeletal and growth patterns were found.
View Article and Find Full Text PDFIn marinas and harbours, the accumulation of pollutants in sediments, combined with poor exchange of water with the open sea, poses a major environmental threat. The presence of photosynthetic organisms and the related oxygen production, however, may alleviate the negative effects of environmental contamination on heterotrophic organisms, enhancing their physiological defences. Furthermore, possible transgenerational buffer effects may increase the ability of natural populations to face environmental stress.
View Article and Find Full Text PDFGlyphosate-based herbicides (GBHs) occur in aquatic ecosystems at concentrations of hundreds of micrograms per liter. As formulation adjuvants are suspected to be endocrine-disrupting chemicals, we assessed the effects of the recent GBH formulation Roundup® Power 2.0 on vitellogenin (VTG) in Mytilus galloprovincialis.
View Article and Find Full Text PDFUnderstanding the extent to which laboratory findings of low pH on marine organisms can be extrapolated to the natural environment is key toward making better projections about the impacts of global change on marine ecosystems. We simultaneously exposed larvae of the sea urchin Arbacia lixula to ocean acidification in laboratory and natural CO vents and assessed the arm growth response as a proxy of net calcification. Populations of embryos were simultaneously placed at both control and volcanic CO vent sites in Ischia (Italy), with a parallel group maintained in the laboratory in control and low pH treatments corresponding to the mean pH levels of the field sites.
View Article and Find Full Text PDFDismissed industrial plants with chronic environmental contamination globally affect all levels of biological organization in concert with other natural and anthropogenic perturbations. Assessing the impact of such perturbations and finding effective ways to mitigate them have clear ecological and societal implications. Through indoor manipulative experiments, we assessed here the effects of the temporal regime of reworking of contaminated sediment from the Bagnoli-Coroglio brownfield (Tyrrhenian Sea, Italy) on the fertilization process in Paracentrotus lividus.
View Article and Find Full Text PDFMarine sediments store complex mixtures of compounds, including heavy metals, organotins and a large array of other contaminants. Sediment quality monitoring, characterization and management are priorities, due to potential impacts of the above compounds on coastal waters and their biota, especially in cases of pollutants released during dredging activities. Harbours and marinas, as well as estuaries and bays, where limited exchanges of water occurr, the accumulation of toxic compounds poses major concerns for human and environmental health.
View Article and Find Full Text PDFAssessment of the effects of chemical mixtures is a very important objective of the ecotoxicological risk assessment. This study was aimed at evaluating for the first time the effects of a mixture of glyphosate and its main breakdown product aminomethylphosphonic acid (AMPA) on various biomarkers in the mussel Mytilus galloprovincialis. Mussels were exposed for 7, 14 and 21 days to either 100 µg/L of glyphosate, 100 µg/L of AMPA or a mixture of both (100 + 100 µg/L).
View Article and Find Full Text PDFThe combined effects of seawater acidification and the non-steroidal anti-inflammatory drug diclofenac on haemocyte parameters of the mussel Mytilus galloprovincialis and the clam Ruditapes philippinarum were investigated for the first time. Animals were maintained for one week (T0) in natural pH condition (8.1) and two reduced pH values (pH -0.
View Article and Find Full Text PDFThis study was aimed at evaluating the effects of glyphosate on haemocyte parameters of the clam Ruditapes philippinarum. Clams were exposed for 7 days to differing glyphosate concentrations (10, 100 and 1000 μg/L) and various haemocyte parameters were measured, such as total haemocyte count (THC), haemocyte diameter and volume, haemocyte proliferation, haemolymph lactate dehydrogenase activity, haemocyte lysate lysozyme and acid phosphatase activities. Glyphosate reduced significantly THC values, while increased both diameter and volume of haemocytes.
View Article and Find Full Text PDF