Publications by authors named "Marco Morra"

To endow an implant surface with enhanced properties to ensure an appropriate seal with the host tissue for inflammation/infection resistance, next-generation bone implant collagen-polyphenol nanolayers were built on conventional titanium surfaces through a multilayer approach. X-ray Photoelectron Spectroscopy (XPS) analysis was performed to investigate the chemical arrangement of molecules within the surface layer and to provide an estimate of their thickness. A short-term (2 and 4 weeks) in vivo test of bone implants in a healthy rabbit model was performed to check possible side effects of the soft surface layer on early phases of osteointegration, leading to secondary stability.

View Article and Find Full Text PDF

Background: The first-pass complete recanalization by mechanical thrombectomy (MT) for the treatment of stroke remains limited due to the poor integration of the clot within current devices. Aspiration can help retrieval of the main clot but fails to prevent secondary embolism in the distal arterial territory. The dense meshes of extracellular DNA, recently described in stroke-related clots, might serve as an anchoring platform for MT devices.

View Article and Find Full Text PDF

In view of endowing the surface of abutments, a component of titanium dental implant systems, with antioxidant and antimicrobial properties, a surface layer coated with epigallocatechin gallate (EGCg), a polyphenol belonging to the class of flavonoids, was built on titanium samples. To modulate interfacial properties, EGCg was linked either directly to the surface, or after populating the surface with terminally linked polyethyleneglycol (PEG) chains, Mw ~1600 Da. The underlying assumption is that fouling-resistant, highly hydrated PEG chains could reduce non-specific bioadhesion and magnify intrinsic EGCg properties.

View Article and Find Full Text PDF

An injectable delivery platform for promoting delayed bone healing has been developed by combining a thermosensitive polyurethane-based hydrogel with strontium-substituted mesoporous bioactive glasses (MBG_Sr) for the long-term and localized co-delivery of pro-osteogenic Sr ions and an osteogenesis-enhancing molecule, -Acetylcysteine (NAC). The incorporation of MBG_Sr microparticles, with a final concentration of 20 mg/mL, did not alter the overall properties of the thermosensitive hydrogel, in terms of sol-to-gel transition at a physiological-like temperature, gelation time, injectability and stability in aqueous environment at 37 °C. In particular, the hydrogel formulations (15% polymer concentration) showed fast gelation in physiological conditions (1 mL underwent complete sol-to-gel transition within 3-5 min at 37 °C) and injectability in a wide range of temperatures (5-37 °C) through different needles (inner diameter in the range 0.

View Article and Find Full Text PDF

Oral diseases and periodontitis in particular are a major health burden worldwide, because of their association with various systemic diseases and with conditions such as peri-implantitis. Attempts have been made over the years to reverse bone loss due to the host disproportionate inflammatory response and to prevent failure of dental implants. To this end, the use of biomaterials functionalized with molecules characterized by anti-inflammatory and antioxidant properties could represent a new frontier for regenerating functional periodontal tissues.

View Article and Find Full Text PDF

In the present study, the cytotoxicity and the antimicrobial activity of two silver citrate-based irrigant solutions were investigated. Cytotoxicity of various concentrations (0.25%, 0.

View Article and Find Full Text PDF

Polyphenols are increasingly investigated for the treatment of periodontitis and research on their use in dental biomaterials is currently being conducted. Grape pomace extracts are a rich source of polyphenols. In the present study, the polyphenols of two different types of grape pomace were characterized and identified by high‑performance liquid chromatography‑diode array detector, and the effect of polyphenol‑rich grape pomace extracts on mesenchymal stem cell (MSC) osteogenic differentiation was investigated.

View Article and Find Full Text PDF

Mesoporous bioactive glass nanoparticles (MBGNs) are emerging biomaterials for bone repair/regeneration, considering their favorable pro-osteogenic and proangiogenic activities. To further improve their therapeutic effects, the endowment of MBGNs with additional antioxidant properties is of particular interest to target oxidative stress related to bone remodeling and diseases. To this end, we developed antioxidant cerium-containing MBGNs (Ce-MBGNs) (particle size of 100-300 ​nm) by using a postimpregnation strategy to incorporate Ce, through which the shape, pore structure, and dispersity of the nanoparticles were preserved.

View Article and Find Full Text PDF

Introduction: Silver decorated mesoporous carbons are interesting systems that may offer effective solutions for advanced wound care products by combining the well-known anti-microbial activity of silver nanoparticles with the versatile properties of ordered mesoporous carbons. Silver is being used as a topical antimicrobial agent, especially in wound repair. However, while silver shows bactericidal properties, it is also cytotoxic at high concentrations.

View Article and Find Full Text PDF

To achieve optimal performances, guided bone regeneration membranes should have several properties, in particular, proper stiffness and tear resistance for space maintenance, appropriate resorption time, and non-cytotoxic effect. In this work, polyphenol-rich pomace extract (PRPE), from a selected grape variety (Nebbiolo), rich in proanthocyanidins and flavonols (e.g.

View Article and Find Full Text PDF

The aim of this study was to evaluate the surface tension and the antimicrobial activity in infected dentin of a NaOCl solution combined with an etidronate powder (Dual Rinse HEDP), compared to pure NaOCl and the classic NaOCl + EDTA irrigating sequence, respectively. The surface tension of three irrigants was measured by Wilhelmy technique. To evaluate the antimicrobial activity of the solutions, 26 human teeth were contaminated for 5 days with E.

View Article and Find Full Text PDF

Biochemical modification of titanium surfaces (BMTiS) entails immobilization of biomolecules to implant surfaces in order to induce specific host responses. This crossover randomized clinical trial assesses clinical success and marginal bone resorption of dental implants bearing a surface molecular layer of covalently-linked hyaluronan in comparison with control implants up to 36 months after loading. Patients requiring bilateral implant rehabilitation received hyaluronan covered implants in one side of the mouth and traditional implants in the other side.

View Article and Find Full Text PDF

Background: The process of osseointegration of dental implants is characterized by healing phenomena at the level of the interface between the surface and the bone. Implant surface modification has been introduced in order to increase the level of osseointegration. The purpose of this study is to evaluate the influence of biofunctional coatings for dental implants and the bone healing response in a rabbit model.

View Article and Find Full Text PDF

The objectives of this study are to evaluate long-term wettability of novel surface-engineered, clinically available dental implants, featuring a surface nanolayer of covalently linked hyaluronan, and to confirm the relationships between wetting properties and surface nanostructure and microstructure. Wettability measurements were performed on clinically available hyaluronan-coated Grade 4 titanium implants, packaged and sterile, that is, in the "on the shelf" condition, after 1 year from production. Wetting properties were measured by the Wilhelmy plate method.

View Article and Find Full Text PDF

Over the recent years, mesoporous bioactive glasses (MBGs) gained interest as bone regeneration systems, due to their excellent bioactivity and ability to release therapeutic molecules. In order to improve the bone regeneration ability of MBGs, the incorporation of Sr ions, due to its recognized pro-osteogenenic potential, represents a very promising strategy. In this study, MBGs based on the SiO₂⁻CaO system and containing different percentages (2 and 4 mol %) of strontium were prepared by two synthesis methods, in the form of microspheres and nanoparticles.

View Article and Find Full Text PDF

Enamel is the covering tissue of teeth, made of regularly arranged hydroxyapatite crystals deposited on an organic matrix composed of 90% amelogenin that is completely degraded at the end of the enamel formation process. Amelogenin has a biomineralizing activity, forming nanoparticles or nanoribbons that guide hydroxyapatite deposit, and regenerative functions in bone and vascular tissue and in wound healing. Biotechnological products containing amelogenin seem to facilitate these processes.

View Article and Find Full Text PDF

The present work concerns an efficient strategy to obtain novel medical devices materials able to inhibit biofilm formation. The new materials were achieved by covalent grafting of p-aminocinnamic or p-aminosalicylic acids on low density polyethylene coupons. The polyethylene surface, previously activated by oxygen plasma treatment, was functionalized using 2-hydroxymethylmetacrylate as linker.

View Article and Find Full Text PDF

Several studies have shown the positive effects of Ti either with nanotopography or coated with collagen on osteoblast differentiation. Thus, we hypothesized that the association of nanotopography with collagen may increase the in vitro osteogenesis on Ti surface. Ti discs with nanotopography with or without collagen coating were characterized by scanning electron microscopy and atomic force microscopy.

View Article and Find Full Text PDF

Periprosthetic infection is a consequence of implant insertion procedures and strategies for its prevention involve either an increase in the rate of new bone formation or the release of antibiotics such as vancomycin. In this work we combined both strategies and developed a novel, multifunctional three-dimensional porous scaffold that was produced using hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), coupled with a pectin (PEC)-chitosan (CHIT) polyelectrolyte (PEI), and loaded with vancomycin (VCA). By this approach, a controlled vancomycin release was achieved and serial bacterial dilution test demonstrated that, after 1week, the engineered construct still inhibits the bacterial growth.

View Article and Find Full Text PDF

Unlabelled: The osseointegration of dental implants and their consequent long-term success is guaranteed by the presence, in the extraction site, of healthy and sufficient alveolar bone. Bone deficiencies may be the result of extraction traumas, periodontal disease and infection. In these cases, placement of titanium implants is contraindicated until a vertical bone augmentation is obtained.

View Article and Find Full Text PDF

The goal of the present work was to investigate the relationship between in vivo healing and inflammatory response and in vitro cytokine expression by macrophages of a synthetic bone filler (25% hydroxylapatite-75% β-tricalcium phosphate) bearing a surface nanolayer of collagen. A clinically accepted, state-of-the-art xenograft material was used as a "negative control," that is, as a material that provides the correct clinical response for the intended use. In vitro data show that both materials exert a very low stimulation of proinflammatory cytokines by macrophages, and this was confirmed by the very mild inflammatory response detected in in vivo tests of local response in a rabbit model.

View Article and Find Full Text PDF

Purpose: To investigate the effects of titanium implants functionalised with collagen type I (TiColl) on bone regeneration and osteointegration in a healthy and osteopenic rat animal model.

Method: TiColl screws were implanted into the femoral condyles of healthy and osteopenic rats and compared with acid-etched titanium (Ti) screws. The osteointegration process was evaluated by a complementary approach combining microtomographic, histological, histomorphometric and biomechanical investigations at four and 12 weeks.

View Article and Find Full Text PDF

The paper presents results of physico-chemical and biological investigations of a surface-engineered synthetic bone filler. Surface analysis confirms that the ceramic phosphate granules present a collagen nanolayer to the surrounding environment. Cell cultures tests show that, in agreement with literature reports, surface-immobilized collagen molecular cues can stimulate progression along the osteogenic pathway of undifferentiated human mesenchymal cells.

View Article and Find Full Text PDF

Osteoimmunology is the crosstalk between cells from the immune and skeletal systems, suggesting a role of pro-inflammatory cytokines in the stimulation of osteoclast activity. Endotoxin or bacterial challenges to inflammatory cells are directly relevant to dental implant pathologies involving bone resorption, such as osseointegration failure and peri-implantitis. While the endotoxin amount on implant devices is regulated by standards, it is unknown whether commercially available dental implants elicit different levels of adherent-endotoxin stimulated cytokines.

View Article and Find Full Text PDF

The investigation of titanium (Ti) surface modifications aiming to increase implant osseointegration is one of the most active research areas in dental implantology. This study was carried out to evaluate the benefits of coating Ti with type I collagen on the osseointegration of dental implants. Acid etched Ti implants (AETi), either untreated or coated with type I collagen (ColTi), were placed in dog mandibles for three and eight weeks for histomorphometric, cellular and molecular evaluations of bone tissue response.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: