Unlabelled: Cyanobacteria are photosynthetic organisms that play important roles in carbon cycling and are promising bioproduction chassis. Here, we isolate two novel cyanobacteria with 4.6Mbp genomes, UTEX 3221 and UTEX 3222, from a unique marine environment with naturally elevated CO₂.
View Article and Find Full Text PDFConflicting results remain on the impacts of climate change on marine organisms, hindering our capacity to predict the future state of marine ecosystems. To account for species-specific responses and for the ambiguous relation of most metrics to fitness, we develop a meta-analytical approach based on the deviation of responses from reference values (absolute change) to complement meta-analyses of directional (relative) changes in responses. Using this approach, we evaluate responses of fish and invertebrates to warming and acidification.
View Article and Find Full Text PDFThe shortfin mako (Isurus oxyrinchus) is the second most fishery-exploited pelagic shark in the Mediterranean Sea, thus its conservation status is a cause for concern. Despite the species has been listed in fishery and trade regulations to hinder its population decline, the lack of knowledge on its distribution patterns and habitats essential for its persistence still hampers the implementation of sound conservation actions. Combining data from local expert knowledge, opportunistic catch records, and Baited Remote Underwater Videos, we show evidence of the interannual presence of young-of-the-year (YOY) I.
View Article and Find Full Text PDFGathering comprehensive marine biodiversity data can be difficult, costly and time consuming, preventing adequate knowledge of diversity patterns in many areas worldwide. We propose fishing ports as "natural" sinks of biodiversity information collected by fishing vessels probing disparate habitats, depths, and environments. By combining rapid environmental DNA metabarcoding (eDNA) surveys and data from public registers and Automatic Identification Systems, we show significant positive relationships between fishing fleet activities (i.
View Article and Find Full Text PDFAn in situ reciprocal transplant experiment was carried around a volcanic CO vent to evaluate the anti-predator responses of an anemone goby species exposed to ambient (∼380 μatm) and high (∼850 μatm) CO sites. Overall, the anemone gobies displayed largely unaffected behaviors under high-CO conditions suggesting an adaptive potential of Gobius incognitus to ocean acidification (OA) conditions. This is also supported by its 3-fold higher density recorded in the field under high CO.
View Article and Find Full Text PDFElasmobranchs are heavily impacted by fishing. Catch statistics are grossly underestimated due to missing data from various fishery sectors such as small-scale fisheries. Marine Protected Areas are proposed as a tool to protect elasmobranchs and counter their ongoing depletion.
View Article and Find Full Text PDFInvasive seaweeds are listed among the most relevant threats to marine ecosystems worldwide. Biodiversity hotspots, such as the Mediterranean Sea, are facing multiple invasions and are expected to be severely affected by the introduction of new non-native seaweeds in the near future. In this study, we evaluated the consequences of the shift from the native Ericaria brachycarpa to the invasive Asparagopsis taxiformis habitat on the shallow rocky shores of Favignana Island (Egadi Islands, MPA, Sicily, Italy).
View Article and Find Full Text PDFGlobal change is striking harder and faster in the Mediterranean Sea than elsewhere, where high levels of human pressure and proneness to climate change interact in modifying the structure and disrupting regulative mechanisms of marine ecosystems. Rocky reefs are particularly exposed to such environmental changes with ongoing trends of degradation being impressive. Due to the variety of habitat types and associated marine biodiversity, rocky reefs are critical for the functioning of marine ecosystems, and their decline could profoundly affect the provision of essential goods and services which human populations in coastal areas rely upon.
View Article and Find Full Text PDFPhenotypic plasticity in parental care investment allows organisms to promptly respond to rapid environmental changes by potentially benefiting offspring survival and thus parental fitness. To date, a knowledge gap exists on whether plasticity in parental care behaviors can mediate responses to climate change in marine ectotherms. Here, we assessed the plasticity of parental care investment under elevated temperatures in a gonochoric marine annelid with biparental care, , and investigated its role in maintaining the reproductive success of this species in a warming ocean.
View Article and Find Full Text PDFOrganisms may respond to changing environmental conditions by adjusting their behaviour (i.e., behavioural plasticity).
View Article and Find Full Text PDFCalcified coralline algae are ecologically important in rocky habitats in the marine photic zone worldwide and there is growing concern that ocean acidification will severely impact them. Laboratory studies of these algae in simulated ocean acidification conditions have revealed wide variability in growth, photosynthesis and calcification responses, making it difficult to assess their future biodiversity, abundance and contribution to ecosystem function. Here, we apply molecular systematic tools to assess the impact of natural gradients in seawater carbonate chemistry on the biodiversity of coralline algae in the Mediterranean and the NW Pacific, link this to their evolutionary history and evaluate their potential future biodiversity and abundance.
View Article and Find Full Text PDFOcean warming is altering the biogeographical distribution of marine organisms. In the tropics, rising sea surface temperatures are restructuring coral reef communities with sensitive species being lost. At the biogeographical divide between temperate and tropical communities, warming is causing macroalgal forest loss and the spread of tropical corals, fishes and other species, termed "tropicalization".
View Article and Find Full Text PDFInvasive seaweeds threaten biodiversity and socio-economics values of worldwide marine ecosystems. Understanding to what extent invasive seaweeds can modify local biodiversity is one of the main priorities in conservation ecology. We compared the molluscan assemblage of the invasive Asparagopsis taxiformis with that of the native Ericaria brachycarpa and explore if variation in the molluscan assemblage diversity was related to the substrate attributes (biomass, and thallus, canopy, and interstitial volumes) of the algae.
View Article and Find Full Text PDFRobust assessments of taxonomic and functional diversity are essential components of research programmes aimed at understanding current biodiversity patterns and forecasting trajectories of ecological changes. Yet, evaluating marine biodiversity along its dimensions is challenging and dependent on the power and accuracy of the available data collection methods. Here we combine three traditional survey methodologies (underwater visual census strip transects [UVCt], baited underwater videos [BUV] and small-scale fishery catches [SSFc]), and one novel molecular technique (environmental DNA metabarcoding [eDNA]-12S rRNA and cytochrome oxidase subunit 1 [COI]) to investigate their efficiency and complementarity in assessing fish diversity.
View Article and Find Full Text PDFMarine protected areas (MPAs) socio-ecological effectiveness depends on a number of management and governance elements, among which stakeholder engagement and community support play key roles. Collaborative conservation initiatives that engage stakeholders in action research and knowledge co-production processes can enhance management and governance of MPAs. To design effective strategies aimed at reconciling biodiversity conservation and management of sustainable human uses, it is key to assess how local communities respond to such initiatives and identify the set of contextual factors, institutional, local and individual, potentially affecting these responses.
View Article and Find Full Text PDFExpected temperature rise and seawater pH decrease may affect marine organism fitness. By a transplant experiment involving air-temperature manipulation along a natural CO gradient, we investigated the effects of high pCO (~1100 μatm) and elevated temperature (up to +2 °C than ambient conditions) on the reproductive success, recruitment, growth, shell chemical composition and oxygen consumption of the early life stages of the intertidal reef-building vermetid Dendropoma cristatum. Reproductive success was predominantly affected by temperature increase, with encapsulated embryos exhibiting higher survival in control than elevated temperature conditions, which were in turn unaffected by altered seawater pH levels.
View Article and Find Full Text PDFOcean acidification threatens to disrupt interactions between organisms throughout marine ecosystems. The diversity of reef-building organisms decreases as seawater CO2 increases along natural gradients, yet soft-bodied animals, such as sea anemones, are often resilient. We sequenced the polyA-enriched transcriptome of adult sea anemone Anemonia viridis and its dinoflagellate symbiont sampled along a natural CO2 gradient in Italy to assess stress levels in these organisms.
View Article and Find Full Text PDFOcean acidification (OA) may have varied effects on fish eco-physiological responses. Most OA studies have been carried out in laboratory conditions without considering the in situ pCO/pH variability documented for many marine coastal ecosystems. Using a standard otolith ageing technique, we assessed how in situ ocean acidification (ambient, versus end-of-century CO levels) can affect somatic and otolith growth, and their relationship in a coastal fish.
View Article and Find Full Text PDFRising atmospheric concentrations of carbon dioxide are causing surface seawater pH and carbonate ion concentrations to fall in a process known as ocean acidification. To assess the likely ecological effects of ocean acidification we compared intertidal and subtidal marine communities at increasing levels of pCO at recently discovered volcanic seeps off the Pacific coast of Japan (34° N). This study region is of particular interest for ocean acidification research as it has naturally low levels of surface seawater pCO (280-320 µatm) and is located at a transition zone between temperate and sub-tropical communities.
View Article and Find Full Text PDFMarine bioconstructions are biodiversity-rich, three-dimensional biogenic structures, regulating key ecological functions of benthic ecosystems worldwide. Tropical coral reefs are outstanding for their beauty, diversity and complexity, but analogous types of bioconstructions are also present in temperate seas. The main bioconstructions in the Mediterranean Sea are represented by coralligenous formations, vermetid reefs, deep-sea cold-water corals, Lithophyllum byssoides trottoirs, coral banks formed by the shallow-water corals Cladocora caespitosa or Astroides calycularis, and sabellariid or serpulid worm reefs.
View Article and Find Full Text PDFThe gastropod Dendropoma cristatum is a biogenic engineer of the central Mediterranean, forming reefs along the lower rocky intertidal fringe with a remarkable ecological role. To understand whether reef-associated biofilm cultivable bacterial and biofilm ageing may trigger the settlement of the juvenile snails, a combination of laboratory techniques and field experiments was used. Reef-associated biofilm cultivable bacteria were isolated, and a settlement-choice experiment was performed in situ on artificial biofilms composed of i) a mixture of six biofilm-forming selected isolates, ii) all the cultivable bacteria, and iii) 13-, 23-, 32-day old biofilms formed under natural conditions.
View Article and Find Full Text PDF