The structures and rotational constants of prototypical monocyclic terpenes and terpenoids have been analyzed by a general computational strategy based on recent Pisa composite schemes (PCS) and vibrational perturbation theory at second order (VPT2). Concerning equilibrium geometries, a one-parameter empirical correction is added to bond lengths obtained by the revDSD-PBEP86 double hybrid functional in conjunction with a slightly modified cc-pVTZ-F12 basis set. The same functional and basis set give accurate harmonic frequencies, whereas the cheaper B3LYP hybrid functional in conjunction with a double-ζ basis set is employed to compute the semidiagonal cubic force constants needed to obtain vibrational corrections to the rotational constants in the framework of the VPT2 model.
View Article and Find Full Text PDFThe structural and spectroscopic properties in the gas phase of azulene and some of its N-bearing derivatives have been analyzed by a general computational strategy based on the recent Pisa composite schemes (PCSs). First of all, an accurate semiexperimental equilibrium structure has been derived for azulene and employed to validate the geometrical parameters delivered by different quantum chemical methods. Next, different isomerization energies (azulene to naphthalene, 1-aza-azulene to quinoline and to other isomers) have been computed by an explicitly correlated PCS version employing frozen natural orbitals.
View Article and Find Full Text PDFBarrier-less steps are typical of radical and ionic reactions in the gas-phase, which often take place in extreme environments such as the combustion reactors operating at very high temperatures or the interstellar medium, characterized by ultralow temperatures and pressures. The difficulty of experimental studies in conditions mimicking these environments suggests that computational approaches can provide a valuable support. In this connection, the most advanced treatments of these processes in the framework of transition state theory are able to deliver accurate kinetic parameters provided that the underlying potential energy surface is sufficiently accurate.
View Article and Find Full Text PDFThe unbiased comparison between theory and experiment requires approaches more sophisticated than the basic harmonic-oscillator rigid-rotor model, for taking into account vibrational averaging effects and ro-vibrational couplings in molecules of increasing size. Second-order vibrational perturbation theory based on curvilinear internal coordinates (ICs) offers a remarkable compromise between accuracy and computational cost, thanks to the reduction of mode-mode couplings with respect to their counterparts based on Cartesian coordinates. Therefore, we have developed, implemented, and validated a general engine employing ICs, which allows the accurate evaluation of vibrational averages and ro-vibrational couplings for molecules containing up to about 50 atoms beyond the harmonic approximation.
View Article and Find Full Text PDFEthanolamine hydrates containing from one to seven water molecules were identified via rotational spectroscopy with the aid of accurate quantum chemical methods considering anharmonic vibrational corrections. Ethanolamine undergoes significant conformational changes upon hydration to form energetically favorable hydrogen bond networks. The final structures strongly resemble the pure (HO) complexes reported before when replacing two water molecules by ethanolamine.
View Article and Find Full Text PDFThe structural, conformational, and spectroscopic properties in the gas phase of 20 bicyclic monoterpenes and monoterpenoids have been analyzed by a new accurate, reduced-cost computational strategy. In detail, the revDSD-PBEP86 double-hybrid functional in conjunction with the D3BJ empirical dispersion corrections and a suitable triple-zeta basis set provides accurate geometrical parameters, whence equilibrium rotational constants, which are further improved by proper account of core-valence correlation. Average deviations within 0.
View Article and Find Full Text PDFThe tremendous development of hardware and software is constantly increasing the role of quantum chemical (QC) computations in the assignment and interpretation of experimental results. However, an unbiased comparison between theory and experiment requires the proper account of vibrational averaging effects. In particular, high-resolution spectra in the gas phase are now available for molecules containing up to about 50 atoms, which are too large for a brute-force approach with the available QC methods of sufficient accuracy.
View Article and Find Full Text PDFA comprehensive analysis of the structural, conformational, and spectroscopic properties in the gas phase has been performed for five prototypical steroid hormones, namely, androsterone, testosterone, estrone, β-estradiol, and estriol. The revDSD-PBEP86 double-hybrid functional in conjunction with the D3BJ empirical dispersion and a suitable triple-ζ basis set provides accurate conformational energies and equilibrium molecular structures, with the latter being further improved by proper account of core-valence correlation. Average deviations within 0.
View Article and Find Full Text PDFAn effective yet reliable computational workflow is proposed, which permits the computation of accurate geometrical structures for large flexible molecules at an affordable cost thanks to the integration of machine learning tools and DFT models together with reduced scaling computations of vibrational averaging effects. After validation of the different components of the overall strategy, a panel of molecules of biological interest have been analyzed. The results confirm that very accurate geometrical parameters can be obtained at reasonable cost for molecules including up to about 50 atoms, which are the largest ones for which comparison with high-resolution rotational spectra is possible.
View Article and Find Full Text PDFA new computational strategy has been applied to the conformational and spectroscopic properties in the gas phase of amino acids with very distinctive features, ranging from different tautomeric forms (histidine) to ring puckering (proline), and heteroaromatic structures with non-equivalent rings (tryptophan). The integration of modern double-hybrid functionals and wave-function composite methods has allowed us to obtain accurate results for a large panel of conformers with reasonable computer times. The remarkable agreement between computations and microwave experiments allows an unbiased interpretation of the latter in terms of stereoelectronic effects.
View Article and Find Full Text PDFA general strategy for the accurate computation of structural and spectroscopic properties of biomolecule building blocks in the gas phase is proposed and validated for tautomeric equilibria. The main features of the new model are the inclusion of core-valence correlation in geometry optimizations by a double hybrid functional and the systematic use of wave-function composite methods in conjunction with cc-pVZ-F12 basis sets with separate extrapolation of MP2 and post-MP2 contributions. The resulting Pisa composite scheme employing conventional (PCS) or explicitly correlated (PCS-F12) approaches is applied to the challenging problem of guanine tautomers in the gas phase.
View Article and Find Full Text PDFJ Chem Theory Comput
December 2022
The present paper is devoted to the implementation and validation of a second-order perturbative approach to anharmonic vibrations, followed by variational treatment of strong couplings (GVPT2) based on curvilinear internal coordinates. The main difference with respect to the customary Cartesian-based formulation is that the kinetic energy operator is no longer diagonal, and has to be expanded as well, leading to additional terms which have to be taken into proper account. It is, however, possible to recast all the equations as well-defined generalizations of the corresponding Cartesian-based counterparts, thus achieving a remarkable simplification of the new implementation.
View Article and Find Full Text PDFIn this paper, we show that the standard second-order vibrational perturbation theory (VPT2) for Abelian groups can be used also for non-Abelian groups without employing specific equations for two- or threefold degenerate vibrations but rather handling in the proper way all the degeneracy issues and deriving the peculiar spectroscopic signatures of non-Abelian groups (e.g., -doubling) by a posteriori transformations of the eigenfunctions.
View Article and Find Full Text PDFHigh resolution X-ray photoelectron spectra of a series of substituted pyridines (pyridine, 2-fluoropyridine, and 2,6-difluoropyridine) have been recorded and rationalized by means of a quantum mechanical approach based on the density functional theory including vibronic effects at the Franck-Condon level. The significant chemical shifts of the C1s binding energies induced by fluorine atoms are reproduced quantitatively by our computational model, as well as the vibrational fine structure and the band shapes. Nonsymmetric normal modes play an important role due to the core-hole localization in the presence of equivalent carbon atoms in pyridine and 2,6-difluoropyridine.
View Article and Find Full Text PDFIs it possible to convert highly specialized research in the field of computational spectroscopy into robust and user-friendly aids to experiments and industrial applications? What kind of tools should be created to increase the interactions between researchers with different backgrounds and push towards new frontiers in computational chemistry? The outstanding advances in computational spectroscopy and the wide availability of computational and analytical tools are paving the route toward the study of problems that were previously difficult or impossible to solve and enable the imagination of even more ambitious targets for fundamental and applied research. The combination of new computer- and data-centric technologies is transforming data analysis from an uncommon and retrospective practice into a proactive process of strategic decision and action. This paper starts from these premises and proposes a perspective for a new cyberinfrastructure aimed at integrating developments in theory, algorithms and software with new tools for workflow management, data mining and visualization.
View Article and Find Full Text PDFBy combining rotational spectroscopy in supersonic expansion with the capability of state-of-the-art quantum-chemical computations in accurately determining structural and energetic properties, the genuine nature of a sulfur-sulfur chalcogen bond between dimethyl sulfide and sulfur dioxide has been unveiled in a gas-jet environment free from collision, solvent and matrix perturbations. A SAPT analysis pointed out that electrostatic S⋅⋅⋅S interactions play the dominant role in determining the stability of the complex, largely overcoming dispersion and C-H⋅⋅⋅O hydrogen-bond contributions. Indeed, in agreement with the analysis of the quadrupole-coupling constants and of the methyl internal rotation barrier, the NBO and NOCV/CD approaches show a marked charge transfer between the sulfur atoms.
View Article and Find Full Text PDFIn this work semi-experimental and theoretical equilibrium geometries of 10 sulfur-containing organic molecules, as well as 4 oxygenated ones, are determined by means of a computational protocol based on density functional theory. The results collected in the present paper further enhance our online database of accurate semi-experimental equilibrium molecular geometries, adding 13 new molecules containing up to 8 atoms, for 12 of which the first semi-experimental equilibrium structure is reported, to the best of our knowledge. We focus in particular on sulfur-containing compounds, aiming both to provide new accurate data on some rather important chemical moieties, only marginally represented in the literature of the field, and to examine the structural features of carbon-sulfur bonds in the light of the previously presented linear regression approach.
View Article and Find Full Text PDFThe determination of accurate equilibrium molecular structures plays a fundamental role for understanding many physical-chemical properties of molecules, ranging from the precise evaluation of the electronic structure to the analysis of dynamical and environmental effects in tuning their overall behavior. For this purpose the so-called semiexperimental approach, based on a nonlinear least-squares fit of the moments of inertia associated with a set of available isotopologues, allows one to obtain very accurate results, without the unfavorable computational cost characterizing high-level quantum chemical methods. In the present work the MSR (Molecular Structure Refinement) software for the determination of equilibrium structures by means of the semiexperimental approach is presented, and its implementation is discussed in some detail.
View Article and Find Full Text PDFIn the present work, the near edge X-ray absorption spectroscopy (NEXAFS) spectra at both C and N K-edges of pyridine, 2-fluoropyridine, and 2,6-difluoropyridine have been studied both experimentally and theoretically. From an electronic point of view, both transition potential density functional theory and time-dependent density functional theory approaches lead to reliable results provided that suitable basis sets and density functionals are employed. In this connection, the global hybrid B3LYP functional in conjunction with the EPR-III basis set appears particularly suitable after constant scaling of the band positions.
View Article and Find Full Text PDF