The enzyme diisopropyl fluorophosphatase (DFPase, EC 3.1.8.
View Article and Find Full Text PDFDiisopropyl fluorophosphatase (DFPase) from Loligo vulgaris is an efficient and robust biocatalyst for the hydrolysis of a range of highly toxic organophosphorus compounds including the nerve agents sarin, soman, and cyclosarin. In contrast to the substrate diisopropyl fluorophosphate (DFP) the nerve agents possess an asymmetric phosphorus atom, which leads to pairs of enantiomers that display markedly different toxicities. Wild-type DFPase prefers the less toxic stereoisomers of the substrates which leads to slower detoxification despite rapid hydrolysis.
View Article and Find Full Text PDFThe enzyme diisopropyl fluorophosphatase (DFPase) from the squid Loligo vulgaris effectively catalyzes the hydrolysis of diisopropyl fluorophosphate (DFP) and a number of organophosphorus nerve agents, including sarin, soman, cyclosarin, and tabun. Up to now, the determination of kinetic data has been achieved by techniques such as pH-stat titration, ion-selective electrodes, and fluorogenic substrate analogs. We report a new assaying method using in situ Fourier transform infrared (FTIR) spectroscopy with attenuated total reflection (ATR) for the real-time determination of reaction rates.
View Article and Find Full Text PDFTreatment regimen of poisonings by organophosphorus (OP) compounds usually includes oxime therapy. The treatment options in soman poisoning are very limited due to rapid aging of the inhibited acetylcholinesterase (AChE), when the enzyme species is considered as irreversibly inhibited and resistant towards reactivation by oximes. Hence, oxime treatment probably comes too late in realistic scenarios.
View Article and Find Full Text PDF