Publications by authors named "Marco Mellado"

Much work has been dedicated to the quest to determine the structure-activity relationship in synthetic brassinosteroid (BR) analogs. Recently, it has been reported that analogs with phenyl or benzoate groups in the alkyl chain present activities comparable to those shown by natural BRs, depending on the nature of the substituent in the aromatic ring. However, as it is well known that the activity depends on the structure of the whole molecule, in this work, we have synthesized a series of compounds with the same substituted benzoate in the alkyl chain and a hydroxyl group at C3.

View Article and Find Full Text PDF

Malaria is an infectious disease caused by spp. parasites, with widespread drug resistance to most antimalarial drugs. We report the development of two 3D-QSAR models based on comparative molecular field analysis (CoMFA), comparative molecular similarity index analysis (CoMSIA), and a 2D-QSAR model, using a database of 349 compounds with activity against the 3D7 strain.

View Article and Find Full Text PDF

A non-structural SARS-CoV-2 protein, PLpro, is involved in post-translational modifications in cells, allowing the evasion of antiviral immune response mechanisms. In this study, potential PLpro inhibitory drugs were designed using QSAR, molecular docking, and molecular dynamics. A combined QSAR equation with physicochemical and Free-Wilson descriptors was formulated.

View Article and Find Full Text PDF

Background: Standard cancer treatments show a lack of selectivity that has led to the search for new strategies against cancer. The selective elimination of cancer cells modulating the redox environment, known as "selective oxycution", has emerged as a viable alternative. This research focuses on characterizing the unexplored Escallonia genus plant extracts and evaluating their potential effects on cancer's redox balance, cytotoxicity, and activation of death pathways.

View Article and Find Full Text PDF

pH regulation is essential to allow normal cell function, and their imbalance is associated with different pathologic situations, including cancer. In this study, we present the synthesis of 2-(((2-aminoethyl)imino)methyl)phenol (HL1) and the iron (III) complex (Fe(L1)Br, ()), confirmed by X-ray diffraction analysis. The absorption and emission properties of complex were assessed in the presence and absence of different physiologically relevant analytes, finding a fluorescent turn-on when OH was added.

View Article and Find Full Text PDF

Glycogen synthase kinase 3 (GSK-3) is involved in different diseases, such as manic-depressive illness, Alzheimer's disease and cancer. Studies have shown that insulin inhibits GSK-3 to keep glycogen synthase active. Inhibiting GSK-3 may have an indirect pro-insulin effect by favouring glycogen synthesis.

View Article and Find Full Text PDF

The development of fluorescent pigments is an area of interest in several research fields due to their high sensitivity. In the current study-eight known and three new N,N-dimethylamino-chalcones (12a-k) were synthesized with good yields using the Claisen-Schmidt reaction. For each molecular system, the photophysical properties, including the maximum absorption wavelength (λ), molar absorption coefficient (ε), maximum excitation wavelength (λ), maximum emission wavelength (λ), Stokes Shift (Δλ), fluorescence quantum yield (Φ), fluorescence lifetime (τ), radiative and non-radiative rate constants (k and k, respectively) were evaluated.

View Article and Find Full Text PDF

Brassinosteroids are plant hormones whose main function is to stimulate plant growth. However, they have been studied for their biological applications in humans. Brassinosteroid compounds have displayed an important role in the study of cancer pathology and show potential for developing novel anticancer drugs.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers synthesized five new resveratrol-dimers and one resveratrol-monomer, using a specific compound as a core, to test their effectiveness against various harmful bacteria.
  • * The new compounds showed strong antibacterial activity against Listeria monocytogenes, outperforming chloramphenicol, and a potential mechanism was identified that could help develop better treatments for listeriosis in the future.
View Article and Find Full Text PDF

This study aimed to determine the in vitro cytotoxicity and understand possible cytotoxic mechanisms via an in silico study of eleven chalcones synthesized from two acetophenones. Five were synthesized from a prenylacetophenone isolated from a plant that grows in the Andean region of the Atacama Desert. The cytotoxic activity of all the synthesized chalcones was tested against breast cancer cell lines using an MTT cell proliferation assay.

View Article and Find Full Text PDF

In this study, a series of novel 1,3,4-oxadiazole-benzimidazole derivatives were designed and synthesized. Their cytotoxic activities against five cancer cell lines, including A549, MCF-7, C6, HepG2, and HeLa, were evaluated by the MTT assay. The compounds , showed satisfactory potencies with much higher anticancer activity in comparison to the reference drug doxorubicin against the studied cancer cell lines.

View Article and Find Full Text PDF

Mercury (Hg) is an element with high toxicity, especially to the nervous system, and fluorescent pigments are used to visualize dynamic processes in living cells. A little explored fluorescent core is chalcone. Herein, we synthesized chalcone (2E)-3-(4-(dimethylamino)phenyl)-1-phenylprop-2-en-1-one (8) and assessed its photophysical properties.

View Article and Find Full Text PDF

Neuroblastoma is one of the most frequent types of cancer found in infants, and traditional chemotherapy has limited efficacy against this pathology. Thus, the development of new compounds with higher activity and selectivity than traditional drugs is a current challenge in medicinal chemistry research. In this study, we report the synthesis of 21 chalcones with antiproliferative activity and selectivity against the neuroblastoma cell line SH-SY5Y.

View Article and Find Full Text PDF

Monoamine oxidases (MAOs) are attractive targets in drug design. The inhibition of one of the isoforms (A or B) is responsible for modulating the levels of different neurotransmitters in the central nervous system, as well as the production of reactive oxygen species. Molecules that act selectively on one of the MAO isoforms have been studied deeply, and coumarin has been described as a promising scaffold.

View Article and Find Full Text PDF

Cancer is the second death cause worldwide, with breast and colon cancer among the most prevalent types. Traditional treatment strategies have several side effects that inspire the development of novel anticancer agents derived from natural sources, like chalcone derivatives. For this investigation, twenty-three chalcones () were synthesized and evaluated as antiproliferative agents against MCF-7 and Caco-2 cells, finding three and two compounds with similar or higher antiproliferative activity than daunorubicin, while only two chalcones showed better selectivity indexes than daunorubicin on MCF-7.

View Article and Find Full Text PDF

Malaria is an infectious illness, affecting vulnerable populations in Third World countries. Inspired by natural products, indole alkaloids have been used as a nucleus to design new antimalarial drugs. So, eighteen oxindole derivatives, analogues were obtained with moderate to excellent yields.

View Article and Find Full Text PDF

Monoamine oxidases (MAOs) are important targets in medicinal chemistry, as their inhibition may change the levels of different neurotransmitters in the brain, and also the production of oxidative stress species. New chemical entities able to interact selectively with one of the MAO isoforms are being extensively studied, and chalcones proved to be promising molecules. In the current work, we focused our attention on the understanding of theoretical models that may predict the MAO-B activity and selectivity of new chalcones.

View Article and Find Full Text PDF

This work reports on the synthesis of eight new 2'-hydroxy-chalcones with potential anti-phytopathogenic applications in agroindustry, among others, via Claisen-Schmidt condensation and ultrasound assisted reaction. Assays showed three chalcones with allyl moieties strongly inhibited growth of phytopathogenic oomycete ; moreover, compound had a half maximal effective concentration (EC) value (32.5 µg/mL) similar to that of metalaxyl (28.

View Article and Find Full Text PDF

Monoamine oxidase B inhibitory activity is closely regulated by the interaction of the small molecules with the enzyme. It is therefore desirable to use theoretical approaches to design rational methods to develop new molecules to modulate specific interactions with the protein. Here, we report such methods, and we illustrate their successful implementation by studying six synthetized 3-arylcoumarins (71-76) based on them.

View Article and Find Full Text PDF

is a phytopathogen that causes extensive damage in different crops, and therefore, produces important economic losses all around the world. Chemical fungicides are a key factor for the control of this disease. However, ecological and environmental considerations, as well as the appearance of strains that are resistant to commercial fungicides, have prompted the quest for new antifungal agents which are of low ecological impact.

View Article and Find Full Text PDF

is a genus of yeasts and is the most common cause of fungal infections worldwide. However, only a few antifungal drugs are currently available for the treatment of infections. In the last decade, terpenophenols have attracted much attention because they often possess a variety of biological activities.

View Article and Find Full Text PDF

A series of ten chalcones (7a-j) and five new dihydrochromane-chalcone hybrids (7k-o) were synthesized and identified using spectroscopic techniques (IR, NMR, and MS). All compounds were evaluated in vitro against the B. cinerea and M.

View Article and Find Full Text PDF

Background: Ephedra chilensis K Presl, known locally as pingo-pingo, is a Chilean endemic plant used in traditional medicine as an anti-inflammatory and used in other treatments. However, unlike for the other Ephedra species, there have been no reports on the antioxidant and cytotoxic effects of this plant. The present study aims to explore the potential applications of E.

View Article and Find Full Text PDF

To investigate the anti- activities of chalconic compounds, nine dialkoxychalcones ⁻, along with their key building block 2',4'-dihydroxychalcone , were evaluated for their potential oomycide activities against strains. The synthesis afforded a series of -alkylated derivatives with typical chalcone skeletons. Compounds ⁻ were reported for the first time.

View Article and Find Full Text PDF

Background: The antifeedant activity of 18 sesquiterpenoids of the drimane family (polygodial, drimenol and derivatives) was investigated.

Results: Polygodial, drimanic and nordrimanic derivatives were found to exert antifeedant effects against two insect species, Spodoptera frugiperda and Epilachna paenulata, which are pests of agronomic interest, indicating that they have potential as biopesticide agents. Among the 18 compounds tested, the epoxynordrimane compound (11) and isonordrimenone (4) showed the highest activity [50% effective concentration (EC ) = 23.

View Article and Find Full Text PDF