Ergot alkaloids are important as mycotoxins or as drugs. Naturally occurring ergot alkaloids as well as their semisynthetic derivatives have been used as pharmaceuticals in modern medicine for decades. We identified 196 putative ergot alkaloid biosynthetic genes belonging to at least 31 putative gene clusters in 31 fungal species by genome mining of the 360 available genome sequences of ascomycetous fungi with known proteins.
View Article and Find Full Text PDFA previous study showed that together with the festuclavine synthase FgaFS, the old yellow enzyme FgaOx3 from Aspergillus fumigatus catalyzed the conversion of chanoclavine-I aldehyde to festuclavine in the biosynthesis of ergot alkaloids. In the absence of FgaFS, a mixture containing two compounds with a ratio of 7:3 was detected in the enzyme assay of FgaOx3. NMR experiments including (DQF)-COSY, HSQC, HMBC and NOESY identified their structures as E/Z isomers of N-methyl-N-[(5R,10R)-10-(2-oxo-propyl)-2,4,5,10-tetrahydrobenzo[cd]indol-5-yl]formamide and proved the migration of the formyl group at C-8 in chanoclavine I-aldehyde to N-6 in the identified products.
View Article and Find Full Text PDFErgot alkaloids are indole derivatives with diverse structures and biological activities. They are produced by a wide range of fungi with Claviceps purpurea as the most important producer for medical use. Chanoclavine-I aldehyde is proposed as a branch point via festuclavine or pyroclavine to clavine-type alkaloids in Trichocomaceae and via agroclavine to ergoamides and ergopeptines in Clavicipitaceae.
View Article and Find Full Text PDFFungal indole prenyltransferases participate in a multitude of biosynthetic pathways. Their ability to prenylate diverse substrates has attracted interest for potential use in chemoenzymatic synthesis. The fungal indole prenyltransferase FtmPT1 catalyzes the prenylation of brevianamide F in the biosynthesis of fumitremorgin-type alkaloids, which show diverse pharmacological activities and are promising candidates for the development of antitumor agents.
View Article and Find Full Text PDFErgot alkaloids are toxins and important pharmaceuticals which are produced biotechnologically on an industrial scale. A putative gene fgaFS has been identified in the biosynthetic gene cluster of fumigaclavine C, an ergot alkaloid of the clavine-type. The deduced gene product FgaFS comprises 290 amino acids with a molecular mass of about 32.
View Article and Find Full Text PDFNine reversely C3-prenylated pyrrolo[2,3-b]indoles were successfully prepared by using two recombinant enzymes involved in the biosynthesis of acetylaszonalenin from Neosartorya fischeri. The prenyltransferase AnaPT catalysed the conversion of six tryptophan-containing cyclic dipeptides to reversely C3-prenylated indoline derivatives. Using cyclo-L-Trp-L-Trp as substrate, both mono- and diprenylated indolines were obtained.
View Article and Find Full Text PDFErgot alkaloids are toxins and important pharmaceuticals which are produced biotechnologically on an industrial scale. A putative gene fgaDH has been identified in the biosynthetic gene cluster of fumigaclavine C, an ergot alkaloid of the clavine-type. The deduced gene product FgaDH comprises 261 amino acids with a molecular mass of about 27.
View Article and Find Full Text PDF