Publications by authors named "Marco Martinez-Gonzalez"

Article Synopsis
  • ModelHamiltonian is a free Python library that helps scientists create and work with different math models related to quantum chemistry, like the Heisenberg and Ising models.
  • It was designed to make testing new methods easier but is also useful for education and research.
  • Users can build models without coding thanks to a user-friendly interface, and there's even a feature to communicate with ChatGPT in plain language.
View Article and Find Full Text PDF

PyCI is a free and open-source Python library for setting up and running arbitrary determinant-driven configuration interaction (CI) computations, as well as their generalizations to cases where the coefficients of the determinant are nonlinear functions of optimizable parameters. PyCI also includes functionality for computing the residual correlation energy, along with the ability to compute spin-polarized one- and two-electron (transition) reduced density matrices. PyCI was originally intended to replace the ab initio quantum chemistry functionality in the HORTON library but emerged as a standalone research tool, primarily intended to aid in method development, while maintaining high performance so that it is suitable for practical calculations.

View Article and Find Full Text PDF

GBasis is a free and open-source Python library for molecular property computations based on Gaussian basis functions in quantum chemistry. Specifically, GBasis allows one to evaluate functions expanded in Gaussian basis functions (including molecular orbitals, electron density, and reduced density matrices) and to compute functionals of Gaussian basis functions (overlap integrals, one-electron integrals, and two-electron integrals). Unique features of GBasis include supporting evaluation and analytical integration of arbitrary-order derivatives of the density (matrices), computation of a broad range of (screened) Coulomb interactions, and evaluation of overlap integrals of arbitrary numbers of Gaussians in arbitrarily high dimensions.

View Article and Find Full Text PDF

Grid is a free and open-source Python library for constructing numerical grids to integrate, interpolate, and differentiate functions (e.g., molecular properties), with a strong emphasis on facilitating these operations in computational chemistry and conceptual density functional theory.

View Article and Find Full Text PDF

The hard/soft acid/base (HSAB) principle is a cornerstone in our understanding of chemical reactivity preferences. Motivated by the success of the original ("global") version of this rule, a "local" counterpart was readily proposed to account for regioselectivity preferences, in particular, in ambident reactions. However, ample experimental evidence indicates that the local HSAB principle often fails to provide meaningful predictions.

View Article and Find Full Text PDF

The 1,3 dipolar cycloaddition reactions of münchnones and alkenes provide an expedite synthetic way to substituted pyrroles, an exceedingly important structural motif in the pharmaceutical and material science fields of research. The factors governing their regioselectivity rationalization are not well understood. Using several approaches, we investigate a set of 14 reactions (featuring two münchnones, 12 different alkenes, and two alkynes).

View Article and Find Full Text PDF

Following a previous work, we have assessed the feasibility of MP2/CBS(, ) as an alternative to state-of-the-art density functionals. The effect of using augmented basis sets is here tested on the 76 barrier heights and 10 isomerization reactions previously utilized. Moreover, calculations for 20 sets of the GMTKN24 database for thermochemistry, kinetics, and noncovalent interactions have been performed.

View Article and Find Full Text PDF

In this study, we give a new physical insight into how enzymatic environments influence a redox process. This is particularly important in a biochemical context, in which oxidoreductase enzymes and low-molecular-weight cofactors create a microenvironment, fine-tuning their specific redox potential. We present a new theoretical model, quantitatively backed up by quantum chemically calculated data obtained for key biological sulfur-based model reactions involved in preserving the cellular redox homeostasis during oxidative stress.

View Article and Find Full Text PDF

The regioselectivity of the 1,3-dipolar cycloaddition of a model nitrone with a set of dipolarophiles, presenting diverse electronic effects, is analyzed using conceptual density functional theory (DFT) methods. We deviate from standard approaches based on frontier molecular orbitals and formulations of the local hard/soft acid/base principle and use instead the dual descriptor. A detailed analysis is carried out to determine the influence of the way to calculate the dual descriptor, the computational procedure, basis set and choice of method to condensate the values of this descriptor.

View Article and Find Full Text PDF

To assess the title issue, 38 hydrogen transfer barrier heights and 38 non-hydrogen transfer barrier heights/isomerizations extracted from extensive databases have been considered, in addition to 4 2 p-isomerization reactions and 6 others for large organic molecules. All Kohn-Sham DFT calculations have employed the popular M06-2X functional, whereas the correlated molecular orbital (MO)-based ones are from single-reference MP2 and CCSD(T) methods. They have all utilized the same basis sets, with raw MO energies subsequently extrapolated to the complete basis set limit without additional cost.

View Article and Find Full Text PDF

The retro-cycloaddition thermal reaction of isoxazolino[4,5:1,2][60]fullerenes to pristine fullerene seems to be guided by the electronic nature of the substituted nitrile oxide 1,3-dipole in the isoxazoline ring. Trapping experiments proved that the reaction mechanism occurs by thermal removal of the nitrile oxide 1,3-dipole in a process that is favored in the presence of a big excess of a highly efficient dipolarophile such as maleic anhydride. Theoretical gas phase calculations carried out at the B3LYP/6-31G(d) and M06-2X/6-31G(d) levels of theory underpin the experimental findings and predict that compound 1c, bearing the p-(CH)N-Ph substituent on the isoxazoline ring and with a remarkable experimental conversion efficiency in just 12 h, showed the lowest activation energy.

View Article and Find Full Text PDF

Using the maximum hardness principle, we show that the oxidation potential of a molecule increases as its electronegativity increases and also increases as its electronegativity in its oxidized state increases. This insight can be used to construct a linear free energy relation for the oxidation potential, which we train on a set of 31 organic redox couples and test on a set of 10 different redox reactions. Better results are obtained when the electronegativity of the oxidized/reduced reagents are adjusted to account for the reagents' interaction with their chemical environment.

View Article and Find Full Text PDF