Publications by authors named "Marco M Scuderi"

Laboratory acoustic emissions (AEs) serve as small-scale analogues to earthquakes, offering fundamental insights into seismic processes. To ensure accurate physical interpretations of AEs, rigorous calibration of the acoustic system is essential. In this paper, we present an empirical calibration technique that quantifies sensor response, instrumentation effects, and path characteristics into a single entity termed instrument apparatus response.

View Article and Find Full Text PDF

Many rock deformation experiments used to characterize the frictional properties of tectonic faults are performed on powdered fault rocks or on bare rock surfaces. These experiments have been fundamental to document the frictional properties of granular mineral phases and provide evidence for crustal faults characterized by high friction. However, they cannot entirely capture the frictional properties of faults rich in phyllosilicates.

View Article and Find Full Text PDF

Giant rockslides are widespread and sensitive to hydrological forcing, especially in climate change scenarios. They creep slowly for centuries and then can fail catastrophically posing major threats to society. However, the mechanisms regulating the slow-to-fast transition toward their catastrophic collapse remain elusive.

View Article and Find Full Text PDF

Faults can slip seismically or aseismically depending on their hydromechanical properties, which can be measured in the laboratory. Here, we demonstrate that fault slip induced by fluid injection in a natural fault at the decametric scale is quantitatively consistent with fault slip and frictional properties measured in the laboratory. The increase in fluid pressure first induces accelerating aseismic creep and fault opening.

View Article and Find Full Text PDF

Fluid overpressure is one of the primary mechanisms for tectonic fault slip, because fluids lubricate the fault and fluid pressure reduces the effective normal stress that holds the fault in place. However, current models of earthquake nucleation, based on rate- and state- friction laws, imply that stable sliding is favoured by the increase of pore fluid pressure. Despite this controversy, currently, there are only a few studies on the role of fluid pressure under controlled, laboratory conditions.

View Article and Find Full Text PDF