Publications by authors named "Marco Lolli"

FTO, an -methyladenosine (mA) and ,2'--dimethyladenosine (mA) RNA demethylase, is a promising target for treating acute myeloid leukemia (AML) due to the significant anticancer activity of its inhibitors in preclinical models. Here, we demonstrate that the FTO inhibitor FB23-2 suppresses proliferation across both AML and CML cell lines, irrespective of FTO dependency, indicating an alternative mechanism of action. Metabolomic analysis revealed that FB23-2 induces the accumulation of dihydroorotate (DHO), a key intermediate in pyrimidine nucleotide synthesis catalyzed by human dihydroorotate dehydrogenase (DHODH).

View Article and Find Full Text PDF

Malaria remains a severe global health concern, with 249 million cases reported in 2022, according to the World Health Organization (WHO) [1]. PfDHODH is an essential enzyme in malaria parasites that helps to synthesize certain building blocks for their growth and development. It has been confirmed that targeting Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) enzyme could lead to new and effective antimalarial drugs.

View Article and Find Full Text PDF

Dihydroorotate dehydrogenase (DHODH), an enzyme that plays a critical role in the pyrimidine biosynthesis, has been recognized as a promising target for the treatment of diseases that involve cellular proliferation, such as autoimmune diseases and cancers. Pharmacological inhibition of human DHODH (hDHODH) that offers a potential therapeutic strategy for the treatment in adult subjects with acute myeloid leukemia (AML) has recently been supported by phase I/II clinical trials for the treatment of patients with relapsed/refractory AML. To facilitate the development of optimized hDHODH inhibitors, the presence of an imaging probe that is able to demonstrate target engagement is critical and desirable.

View Article and Find Full Text PDF

AKR1C3 is an upregulated enzyme in prostate and other cancers; in addition to regulating hormone synthesis, this enzyme is thought to play a role in the aggressiveness of tumors and in the defense against drugs. We here used an unbiased method to discover new potent AKR1C3 inhibitors: through an AI-based virtual drug screen, compound was identified as a potent and selective enzymatic inhibitor able to translate this activity into a pronounced antiproliferative effect in the 22RV1 prostate cancer cell model. As other known AKR1C3 inhibitors, compound determined a significantly increased activity of abiraterone, a drug approved for advanced prostate cancer.

View Article and Find Full Text PDF

Cancer remains a primary cause of death globally, and effective treatments are still limited. While chemotherapy has notably enhanced survival rates, it brings about numerous side effects. Consequently, the ongoing challenge persists in developing potent anti-cancer agents with minimal toxicity.

View Article and Find Full Text PDF

Over the years, human dihydroorotate dehydrogenase (hDHODH), which is a key player in the de novo pyrimidine-biosynthesis pathway, has been targeted in the treatment of several conditions, including autoimmune disorders and acute myelogenous leukaemia, as well as in host-targeted antiviral therapy. A molecular exploration of its inhibitor-binding behaviours yielded promising candidates for innovative drug design. A detailed description of the enzymatic pharmacophore drove the decoration of well-established inhibitory scaffolds, thus gaining further in vitro and in vivo efficacy.

View Article and Find Full Text PDF

The assignment of structure by tandem mass spectrometry (MS/MS) relies on the interpretation of the fragmentation behavior of gas-phase ions. Mass spectra were acquired for a series of heterocyclic mimetics of acidic amino acids and a related series of nitrile amino acids. All amino acids were readily protonated or deprotonated by electrospray ionization (ESI), and distinctive fragmentation processes were observed when the ions were subjected to collision-induced dissociation (CID).

View Article and Find Full Text PDF

One of the deadliest infectious diseases, malaria, still has a significant impact on global morbidity and mortality. Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) catalyzes the fourth step in de novo pyrimidine nucleotide biosynthesis and has been clinically validated as an innovative and promising target for the development of novel targeted antimalarial drugs. PfDHODH inhibitors have the potential to significantly slow down parasite growth at the blood and liver stages.

View Article and Find Full Text PDF

AKR1C3 is an enzyme that is overexpressed in several types of radiotherapy- and chemotherapy-resistant cancers. Despite AKR1C3 is a validated target for drug development, no inhibitor has been approved for clinical use. In this manuscript, we describe our study of a new series of potent AKR1C3-targeting 3-hydroxybenzoisoxazole based inhibitors that display high selectivity over the AKR1C2 isoform and low micromolar activity in inhibiting 22Rv1 prostate cancer cell proliferation.

View Article and Find Full Text PDF

Gas phase fragmentation reactions of monoprotonated 4-(3-aminopropyl)- and 4-(4-aminobutyl)-3-hydroxyfurazan were investigated to examine potential interactions between functional groups. The two heterocyclic alkyl amines were ionized by electrospray ionization (ESI, positive mode) and fragmented using tandem mass spectrometry (MS/MS). The fragmentation pathways were characterized using pseudo MS experiments, precursor-ion scans, and density functional computations.

View Article and Find Full Text PDF

Human respiratory syncytial virus (RSV) is an important cause of acute lower respiratory infections, for which no effective drugs are currently available. The development of new effective anti-RSV agents is therefore an urgent priority, and Host-Targeting Antivirals (HTAs) can be considered to target RSV infections. As a contribution to this antiviral avenue, we have characterized the molecular mechanisms of the anti-RSV activity of MEDS433, a new inhibitor of human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of de novo pyrimidine biosynthesis.

View Article and Find Full Text PDF

This study reports on the synthesis and evaluation of novel compounds replacing the nitrogen-containing heterocyclic ring on the chemical backbone structure of cytochrome P450 17α-hydroxylase/12,20-lyase (CYP17A1) inhibitors with a phenyl bearing a sulfur-based substituent. Initial screening revealed compounds with marked inhibition of CYP17A1 activity. The selectivity of compounds was thereafter determined against cytochrome P450 21-hydroxylase, cytochrome P450 3A4, and cytochrome P450 oxidoreductase.

View Article and Find Full Text PDF

Mycobacterium tuberculosis (MTB) is the etiologic agent of tuberculosis (TB), an ancient disease which causes 1.5 million deaths worldwide. Dihydroorotate dehydrogenase (DHODH) is a key enzyme of the MTB de novo pyrimidine biosynthesis pathway, and it is essential for MTB growth in vitro, hence representing a promising drug target.

View Article and Find Full Text PDF

Cancer is a leading cause of death worldwide and there are still limited options for cure. Chemotherapy is the most significant treatment for cancer which increased survival rates, despite this, it is associated with numerous side effects, as well as cancer relapsing due to drug resistance insurgence; consequently, it is still a challenging task to develop new potent and less toxic anti-cancer agents for patients' care. Phenothiazine moiety, which leads a class of well-known antipsychotic drugs, possesses a wide range of biological activities and has been also introduced in cancer chemotherapy.

View Article and Find Full Text PDF

The pharmacological management of influenza virus (IV) infections still poses a series of challenges due to the limited anti-IV drug arsenal. Therefore, the development of new anti-influenza agents effective against antigenically different IVs is therefore an urgent priority. To meet this need, host-targeting antivirals (HTAs) can be evaluated as an alternative or complementary approach to current direct-acting agents (DAAs) for the therapy of IV infections.

View Article and Find Full Text PDF

In recent years, human dihydroorotate dehydrogenase inhibitors have been associated with acute myelogenous leukemia as well as studied as potent host targeting antivirals. Starting from MEDS433 (IC 1.2 nM), we kept improving the structure-activity relationship of this class of compounds characterized by 2-hydroxypyrazolo[1,5-]pyridine scaffold.

View Article and Find Full Text PDF

The development of different generations of BCR-ABL1 tyrosine kinase inhibitors (TKIs) has led to the high overall survival of chronic myeloid leukemia (CML) patients. However, there are CML patients who show resistance to TKI therapy and are prone to progress to more advanced phases of the disease. So, implementing an alternative approach for targeting TKIs insensitive cells would be of the essence.

View Article and Find Full Text PDF

Human dihydroorotate dehydrogenase (hDHODH) is an enzyme belonging to a flavin mononucleotide (FMN)-dependent family involved in de novo pyrimidine biosynthesis, a key biological pathway for highly proliferating cancer cells and pathogens. In fact, hDHODH proved to be a promising therapeutic target for the treatment of acute myelogenous leukemia, multiple myeloma, and viral and bacterial infections; therefore, the identification of novel hDHODH ligands represents a hot topic in medicinal chemistry. In this work, we reported a virtual screening study for the identification of new promising hDHODH inhibitors.

View Article and Find Full Text PDF

The aldo-keto reductase 1C3 (AKR1C3) enzyme is considered an attractive target in Castration Resistant Prostate Cancer (CRPC) because of its role in the biosynthesis of androgens. Flufenamic acid, a non-selective AKR1C3 inhibitor, has previously been subjected to bioisosteric modulation to give rise to a series of compounds with the hydroxytriazole core. In this work, the hit compound of the previous series has been modulated further, and new, more potent, and selective derivatives have been obtained.

View Article and Find Full Text PDF

Aim: Nuclear factor kappa B (NF-κB) is known to play an important role in the inflammatory process which takes place after ischemic stroke. The major objective of the present study was to examine the effects of MEDS-23, a potent inhibitor of NF-κB, on clinical outcomes and brain inflammatory markers in post-ischemic stroke rats.

Main Methods: Initially, a Toxicity Experiment was performed to determine the appropriate dose of MEDS-23 for use in animals, as MEDS-23 was analyzed in vivo for the first time.

View Article and Find Full Text PDF

Although coronaviruses (CoVs) have long been predicted to cause zoonotic diseases and pandemics with high probability, the lack of effective anti-pan-CoVs drugs rapidly usable against the emerging SARS-CoV-2 actually prevented a promptly therapeutic intervention for COVID-19. Development of host-targeting antivirals could be an alternative strategy for the control of emerging CoVs infections, as they could be quickly repositioned from one pandemic event to another. To contribute to these pandemic preparedness efforts, here we report on the broad-spectrum CoVs antiviral activity of MEDS433, a new inhibitor of the human dihydroorotate dehydrogenase (DHODH), a key cellular enzyme of the de novo pyrimidine biosynthesis pathway.

View Article and Find Full Text PDF

The connection with acute myelogenous leukemia (AML) of dihydroorotate dehydrogenase (DHODH), a key enzyme in pyrimidine biosynthesis, has attracted significant interest from pharma as a possible AML therapeutic target. We recently discovered compound , a potent DHODH inhibitor (IC = 1.2 nM), able to induce myeloid differentiation in AML cell lines (THP1) in the low nM range (EC = 32.

View Article and Find Full Text PDF

Emergence of drug resistance and adverse effects often affect the efficacy of nucleoside analogues in the therapy of Herpes simplex type 1 (HSV-1) and type 2 (HSV-2) infections. Host-targeting antivirals could therefore be considered as an alternative or complementary strategy in the management of HSV infections. To contribute to this advancement, here we report on the ability of a new generation inhibitor of a key cellular enzyme of de novo pyrimidine biosynthesis, the dihydroorotate dehydrogenase (DHODH), to inhibit HSV-1 and HSV-2 in vitro replication, with a potency comparable to that of the reference drug acyclovir.

View Article and Find Full Text PDF

Dihydroorotate Dehydrogenase (DHODH) is a key enzyme of the pyrimidine biosynthesis, whose inhibition can induce differentiation and apoptosis in acute myeloid leukemia (AML). DHODH inhibitors had shown promising in vitro and in vivo activity on solid tumors, but their effectiveness was not confirmed in clinical trials, probably because cancer cells exploited the pyrimidine salvage pathway to survive. Here, we investigated the antileukemic activity of MEDS433, the DHODH inhibitor developed by our group, against AML.

View Article and Find Full Text PDF

The identification of different compound series with corresponding structure-activity relationship (SAR) progression for a given target is referred to as SAR transfer, which is of interest in lead optimization. If difficulties are encountered during multiproperty optimization, the SAR transfer concept can be applied attempting to replace a lead compound with another candidate. For a systematic assessment of SAR transfer, computational approaches are required.

View Article and Find Full Text PDF