Publications by authors named "Marco Kliemannel"

We have previously shown that the pro-peptide of human nerve growth factor (NGF) facilitates oxidative folding of the mature part. For the analysis of functional specificities of the pro-peptides of NGF and the related neurotrophin-3 (NT-3) with respect to structure formation, chimeric proteins with swapped pro-peptides were generated. Neither the structure nor the stability of the mature domains was influenced by the heterologous pro-peptides.

View Article and Find Full Text PDF

The pro-peptide of human nerve growth factor (NGF) functions as an intramolecular chaperone during oxidative renaturation of proNGF in vitro and interacts intramolecularly with the mature part of native proNGF. Here, we analyzed the structure formation and stability of the pro-peptide in the context of proNGF and its intramolecular interaction with the native mature part. Folding and unfolding of the NGF-coupled pro-peptide, as analyzed by fluorescence, were biphasic reactions with both phases depending on the interaction with the mature part.

View Article and Find Full Text PDF

Nerve growth factor (NGF), a member of the neurotrophin family, is an all-beta-sheet protein with a characteristic structure motif, the cystine knot. Unfolding of NGF in 6 M GdnHCl has been described previously to involve an initial partial loss of structure and a subsequent very slow conversion to a second, completely unfolded state. This latter conversion was postulated to represent a back-threading of the disulfide bond that passes through the cystine knot (loop threading hypothesis).

View Article and Find Full Text PDF

Human nerve growth factor (NGF) belongs to the structural family of cystine knot proteins, characterized by a disulfide pattern in which one disulfide bond threads through a ring formed by a pair of two other disulfides connecting two adjacent beta-strands. Oxidative folding of NGF revealed that the pro-peptide of NGF stimulates in vitro structure formation. In order to learn more about this folding assisting protein fragment, a biophysical analysis of the pro-peptide structure has been performed.

View Article and Find Full Text PDF

Sortilin (approximately 95 kDa) is a member of the recently discovered family of Vps10p-domain receptors, and is expressed in a variety of tissues, notably brain, spinal cord and muscle. It acts as a receptor for neurotensin, but predominates in regions of the nervous system that neither synthesize nor respond to this neuropeptide, suggesting that sortilin has additional roles. Sortilin is expressed during embryogenesis in areas where nerve growth factor (NGF) and its precursor, proNGF, have well-characterized effects.

View Article and Find Full Text PDF