Two-stage multipass-cell compression of a fiber-chirped-pulse amplifier system to the few-cycle regime is presented. The output delivers a sub-2-cycle (5.8 fs), 107 W average power, 1.
View Article and Find Full Text PDFA novel technique for divided-pulse amplification is presented in a proof-of-principle experiment. A pulse burst, cut out of the pulse train of a mode-locked oscillator, is amplified and temporally combined into a single pulse. High combination efficiency and excellent pulse contrast are demonstrated.
View Article and Find Full Text PDFFew-cycle lasers are essential for many research areas such as attosecond physics that promise to address fundamental questions in science and technology. Therefore, further advancements are connected to significant progress in the underlying laser technology. Here, two-stage nonlinear compression of a 660 W femtosecond fiber laser system is utilized to achieve unprecedented average power levels of energetic ultrashort or even few-cycle laser pulses.
View Article and Find Full Text PDFAn ultrafast fiber chirped-pulse amplifier comprising eight coherently combined amplifier channels is presented. The laser delivers 1 kW average power at 1 mJ pulse energy and 260 fs pulse duration. Excellent beam quality and low-noise performance are confirmed.
View Article and Find Full Text PDFAn ultrafast fiber-chirped-pulse amplification system using a combination of spatial and temporal coherent pulse combination is presented. By distributing the amplification among eight amplifier channels and four pulse replicas, up to 12 mJ pulse energy with 700 W average power and 262 fs pulse duration have been obtained with a system efficiency of 78% and excellent beam quality. To the best of our knowledge, this is the highest energy achieved by an ultrafast fiber-based laser system to date.
View Article and Find Full Text PDFWe present a femtosecond laser system delivering up to 100 W of average power at 343 nm. The laser system employs a Yb-based femtosecond fiber laser and subsequent second- and third-harmonic generation in beta barium borate (BBO) crystals. Thermal gradients within these BBO crystals are mitigated by sapphire heat spreaders directly bonded to the front and back surface of the crystals.
View Article and Find Full Text PDFSpatially and temporally separated amplification and subsequent coherent addition of femtosecond pulses is a promising performance-scaling approach for ultrafast laser systems. Herein we demonstrate for the first time the application of this multidimensional scheme in a scalable architecture. Applying actively controlled divided-pulse amplification producing up to four pulse replicas that are amplified in two ytterbium-doped step-index fibers (6 μm core), pulse energies far beyond the damage threshold of the single fiber have been achieved.
View Article and Find Full Text PDFIn this Letter, we report on a femtosecond fiber chirped-pulse-amplification system based on the coherent combination of the output of four ytterbium-doped large-pitch fibers. Each single channel delivers a peak power of about 6.2 GW after compression.
View Article and Find Full Text PDFThe coherent combination of ultrashort pulses has recently been established as a technique to overcome the limitations of laser amplifiers regarding pulse peak-power, pulse energy, and average power. Similar limitations also occur in nonlinear compression setups. In a proof-of-principle experiment, we show that the techniques developed for the combination of amplifiers can be adapted to nonlinear compression.
View Article and Find Full Text PDFCoherent combination of ultrashort laser pulses emitted from spatially separated amplifiers is a promising power-scaling technique for ultrafast laser systems. It has been successfully applied to fiber amplifiers, since guidance of the signal provides the advantage of an excellent beam quality and straightforward superposition of beams as compared to bulk-type amplifier implementations. Herein we demonstrate, for the first time to our knowledge, a two-channel combining scheme employing Yb:YAG single-crystal rod amplifiers as an energy booster in a fiber chirped-pulse amplification system.
View Article and Find Full Text PDFDivided-pulse amplification is a promising method for the energy scaling of femtosecond laser amplifiers, where pulses are temporally split prior to amplification and coherently recombined afterwards. We present a method that uses an actively stabilized setup with separated stages for splitting and combining. The additional degrees of freedom can be employed to mitigate the limitations originating from saturation of the amplifier that cannot be compensated in passive double-pass configurations using just one common stage for pulse splitting and combining.
View Article and Find Full Text PDFThe energy scaling of ultrashort-pulse systems employing simultaneously the techniques of chirped-pulse amplification and passively combined divided-pulse amplification is analyzed both experimentally and numerically. The maximum achievable efficiency is investigated and fundamental limitations originating from gain saturation, self-phase modulation and depolarization are discussed. A solution to these limitations could be an active stabilization scheme, which would allow for the operation of every single fiber amplifier at higher pulse energies.
View Article and Find Full Text PDFWe report on the nonlinear pulse compression of temporally divided pulses, which is presented in a proof-of-principle experiment. A single 320 fs pulse is divided into four replicas, spectrally broadened in a solid-core fiber, and subsequently recombined. This approach makes it possible to reduce the nonlinearities in the fiber and therefore to use total input peak power of about 13.
View Article and Find Full Text PDFWe report on a femtosecond fiber laser system comprising four coherently combined large-pitch fibers as the main amplifier. With this system, a pulse energy of 1.3 mJ and a peak power of 1.
View Article and Find Full Text PDF