In lieu of the drawbacks of metabolic surgery, a method of mimicking resection of the gastric mucosa could be of value to those with obesity-related cardiovascular disease (CVD). Our study aims to investigate the effect of gastric mucosal devitalization (GMD) on blood pressure (BP) and cardiovascular lipid deposition in a rat model of obesity. GMD of 70 % of the stomach was achieved by argon plasma coagulation.
View Article and Find Full Text PDFBackground And Aims: The early improvement in metabolic profile after sleeve gastrectomy (SG) indicates that the significant benefits of metabolic surgery are gastric in origin. We have previously demonstrated that devitalization of the gastric mucosa (without a reduction in gastric volume) in metabolically disturbed obese rats results in an improvement of obesity and its associated comorbidities. The aims of this study were to assess the technical feasibility, efficacy, and safety of gastric mucosal devitalization (GMD) in a large animal (porcine) model.
View Article and Find Full Text PDFBackground And Aims: The gastric mucosa is an endocrine organ that regulates satiation pathways by expression of orexigenic and anorexigenic hormones. Vertical sleeve gastrectomy (VSG) excludes gastric mucosa and reduces gastric volume. Our study aimed to investigate the independent effects of altering gastric mucosa on obesity and its related comorbidities.
View Article and Find Full Text PDFThe gastrointestinal microbiota in the gut interacts metabolically and immunologically with the host tissue in the contact zone of the mucus layer. For understanding the details of these interactions and especially their dynamics it is crucial to identify the metabolically active subset of the microbiome. This became possible by the development of stable isotope probing techniques, which have only sparsely been applied to microbiome research.
View Article and Find Full Text PDFBesides modulation of reverse cholesterol transport, high density lipoprotein (HDL) is able to modulate vascular function by stimulating endothelial nitric oxide synthase. Recently, it could be documented that this function of HDL was significantly impaired in patients with chronic heart failure (CHF). We investigated alterations in the HDL proteome in CHF patients.
View Article and Find Full Text PDFMultiple reaction monitoring (MRM)-based mass spectrometric quantification of peptides and their corresponding proteins has been successfully applied for biomarker validation in serum. The option of multiplexing offers the chance to analyze various proteins in parallel, which is especially important in obesity research. Here, biomarkers that reflect multiple comorbidities and allow monitoring of therapy outcomes are required.
View Article and Find Full Text PDFBackground: Uric acid (UA) has been identified as one major risk factor for cardiovascular diseases. Lowering of serum UA levels improves endothelial function. The present study investigates for the first time concentration-dependent effects of UA on human aortic endothelial cells (HAEC) and the cellular pathways involved in global proteomic analysis.
View Article and Find Full Text PDFAims/hypothesis: Diabetic voiding dysfunction has been reported in epidemiological dimension of individuals with diabetes mellitus. Animal models might provide new insights into the molecular mechanisms of this dysfunction to facilitate early diagnosis and to identify new drug targets for therapeutic interventions.
Methods: Thirty male Sprague-Dawley rats received either chow or high-fat diet for eleven weeks.
Background: Incidence of urinary tract infections is elevated in patients with diabetes mellitus. Those patients show increased levels of the saturated free fatty acid palmitate. As recently shown metabolic alterations induced by palmitate include production and secretion of the pro-inflammatory cytokine interleukine-6 (IL-6) in cultured human bladder smooth muscle cells (hBSMC).
View Article and Find Full Text PDFBackground: The last decade identified cytokines as one group of major local cell signaling molecules related to bladder dysfunction like interstitial cystitis (IC) and overactive bladder syndrome (OAB). Gap junctional intercellular communication (GJIC) is essential for the coordination of normal bladder function and has been found to be altered in bladder dysfunction. Connexin (Cx) 43 and Cx45 are the most important gap junction proteins in bladder smooth muscle cells (hBSMC) and suburothelial myofibroblasts (hsMF).
View Article and Find Full Text PDFBackground: Human detrusor smooth muscle cells (hBSMCs) are coupled by connexin 43 (Cx43)-positive gap junctions to form functional syncytia. Gap junctional communication likely is necessary for synchronised detrusor contractions and is supposed to be altered in voiding disturbances. Other authors have shown that the pleiotropic cytokine TGF-beta1 upregulates Cx43 expression in human aortic smooth muscle cells.
View Article and Find Full Text PDFAt the initial stages in neuronal development, GABAergic and glycinergic neurotransmission exert depolarizing responses, assumed to be of importance for maturation, which in turn shift to hyperpolarizing in early postnatal life due to development of the chloride homeostasis system. Spherical bushy cells (SBC) of the mammalian cochlear nucleus integrate excitatory glutamatergic inputs with inhibitory (GABAergic and glycinergic) inputs to compute signals that contribute to sound localization based on interaural time differences. To provide a fundamental understanding of the properties of GABAergic neurotransmission in mammalian cochlear nucleus, we investigated the reversal potential of the GABA-evoked currents (E GABA) by means of gramicidin-perforated-patch recordings in developing SBC.
View Article and Find Full Text PDF