IEEE Trans Neural Syst Rehabil Eng
August 2024
Tongue motor function is crucial in a wide range of basic activities and its impairment affects quality of life. The electrophysiological assessment of the tongue relies primarily on needle electromyography, which is limited by its invasiveness and inability to capture the concurrent activity of the different tongue muscles. This work aimed at developing an intraoral grid for high-density surface electromyography (HDsEMG) to non-invasively map the electrical excitation of tongue muscles.
View Article and Find Full Text PDFAfter a stroke, antagonist muscle activation during agonist command impedes movement. This study compared measurements of antagonist muscle activation using surface bipolar EMG in the gastrocnemius medialis (GM) and high-density (HD) EMG in the GM and soleus (SO) during isometric submaximal and maximal dorsiflexion efforts, with knee flexed and extended, in 12 subjects with chronic hemiparesis. The coefficients of antagonist activation (CAN) of GM and SO were calculated according to the ratio of the RMS amplitude during dorsiflexion effort to the maximal agonist effort for the same muscle.
View Article and Find Full Text PDFThe central nervous system (CNS) may produce the same endpoint trajectory or torque profile with different muscle activation patterns. What differentiates these patterns is the presence of cocontraction, which does not contribute to effective torque generation but allows to modulate joints' mechanical stiffness. Although it has been suggested that the generation of force and the modulation of stiffness rely on separate pathways, a characterization of the differences between the synaptic inputs to motor neurons (MNs) underlying these tasks is still missing.
View Article and Find Full Text PDFThe clinical effects of a serious game with electromyography feedback (EMGs_SG) and physical therapy (PT) was investigated prospectively in children with unilateral spastic cerebral palsy (USCP). An additional aim was to better understand the influence of muscle shortening on function. Thirty children with USCP (age 7.
View Article and Find Full Text PDFThe SARS-CoV-2 pandemic challenged health systems worldwide, thus advocating for practical, quick and highly trustworthy diagnostic instruments to help medical personnel. It features a long incubation period and a high contagion rate, causing bilateral multi-focal interstitial pneumonia, generally growing into acute respiratory distress syndrome (ARDS), causing hundreds of thousands of casualties worldwide. Guidelines for first-line diagnosis of pneumonia suggest Chest X-rays (CXR) for patients exhibiting symptoms.
View Article and Find Full Text PDFBiofeedback based on electromyograms (EMGs) has been recently proposed to reduce exaggerated postural activity. Whether the effect of EMG biofeedback on the targeted muscles generalizes to - or is compensated by - other muscles is still an open question we address here. Fourteen young individuals were tested in three 60 s standing trials, without and with EMG-audio feedback: (i) collectively from soleus and medial gastrocnemius and (ii) from medial gastrocnemii.
View Article and Find Full Text PDFDifferent mechanisms of force transmission have been developed for the movement of wheelchairs, from the standard pushrim propulsion to the handbike. Contributing to this repertoire, we recently developed a system of propulsion based on a pulley-cable mechanism, the Handwheelchair.Q.
View Article and Find Full Text PDFBackground And Objectives: Professional pianists tend to develop playing-related musculoskeletal disorders mostly in the forearm. These injuries are often due to overuse, suggesting the existence of a common forearm region where muscles are often excited during piano playing across subjects. Here we use a grid of electrodes to test this hypothesis, assessing where EMGs with greatest amplitude are more likely to be detected when expert pianists perform different excerpts.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
June 2021
Muscle activity monitoring in dynamic conditions is a crucial need in different scenarios, ranging from sport to rehabilitation science and applied physiology. The acquisition of surface electromyographic (sEMG) signals by means of grids of electrodes (High-Density sEMG, HD-sEMG) allows obtaining relevant information on muscle function and recruitment strategies. During dynamic conditions, this possibility demands both a wearable and miniaturized acquisition system and a system of electrodes easy to wear, assuring a stable electrode-skin interface.
View Article and Find Full Text PDFThis study aimed at determining the effect of a passive exoskeleton on local perceived discomfort, perceived effort and low back muscles' activity. Thirteen volunteers performed two simulated working tasks with and without the exoskeleton. In the static task, the exoskeleton decreased the lumbar perceived discomfort, the perceived effort and the level of low back muscles' activity (∼10%) while increasing discomfort in the chest and feet.
View Article and Find Full Text PDFEur J Phys Rehabil Med
October 2021
Background: Fatigue in Parkinson's disease (PD) compromises patients' physical activity and poses questions on how to plan correct rehabilitation training. In addition, the relationship between subjective perceived fatigue and fatigue in motor performance is not yet entirely understood. Therefore, a conclusive interpretation of muscular mechanisms of fatigue in PD has not yet been achieved.
View Article and Find Full Text PDFThe transcutaneous stimulation of lower limb muscles during indoor rowing (FES Rowing) has led to a new sport and recreation and significantly increased health benefits in paraplegia. Stimulation is often delivered to quadriceps and hamstrings; this muscle selection seems based on intuition and not biomechanics and is likely suboptimal. Here, we sample surface EMGs from 20 elite rowers to assess which, when, and how muscles are activated during indoor rowing.
View Article and Find Full Text PDFPurpose: Different motor units (MUs) in the biceps brachii (BB) muscle have been shown to be preferentially recruited during either elbow flexion or supination. Whether these different units reside within different regions is an open issue. In this study, we tested wheter MUs recruited during submaximal isometric tasks of elbow flexion and supination for two contraction levels and with the wrist fixed at two different angles are spatially localized in different BB portions.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
The use of multiple surface EMG electrodes (High-Density surface EMG - HD-sEMG) allows the extraction of anatomical and physiological information either at the muscle or at the motor unit level with applications in several fields ranging from clinical neurophysiology to the control of prosthetic devices. These applications need to acquire monopolar sEMG signals free from power line interference arising from the capacitive coupling between the subject, the acquisition system and the power line. The aim of this work is to provide a common mode analysis of the detection system used to collect monopolar sEMG signals, characterizing different configuration of the reference electrodes leading to different behaviors in terms of immunity to the power line interference.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
The use of electrical stimulation to elicit single twitches and tetanic contractions of skeletal muscles has increased markedly in the last years, with applications ranging from basic physiology to clinical settings. Addressing all possible needs required by different applications with an electrical stimulator is challenging as it requires the device to be highly flexible in terms of stimulation configurations (number of channels and electrode location), and possibility to control the stimulation patterns (timing and stimulation profiles). This paper describes a new wireless, modular, and programmable electrical stimulator integrating the possibility to acquire and use biomechanical signals to trigger the stimulation output.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
December 2019
Objective: The use of linear or bi-dimensional electrode arrays for surface EMG detection (HD-sEMG) is gaining attention as it increases the amount and reliability of information extracted from the surface EMG. However, the complexity of the setup and the encumbrance of HD-sEMG hardware currently limits its use in dynamic conditions. The aim of this paper was to develop a miniaturized, wireless, and modular HD-sEMG acquisition system for applications requiring high portability and robustness to movement artifacts.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
November 2018
Functional electrical stimulation of lower limb muscles during rowing provides a means for the cardiovascular conditioning in paraplegia. The possibility of shaping stimulation profiles according to changes in knee angle, so far conceived as changes in seat position, may help circumventing open issues associated with muscle fatigue and movement coordination. Here, we present a subject-specific biomechanical model for the estimation of knee joint angle during indoor rowing.
View Article and Find Full Text PDFInferences on the active contribution of plantar flexors to the stabilisation of human standing posture have been drawn from surface electromyograms (EMGs). Surface EMGs were however often detected unilaterally, presuming the myoelectric activity from muscles in a single leg reflects the pattern of muscle activation in both legs. In this study we question whether surface EMGs detected from plantar flexor muscles in both legs provide equal estimates of the duration of activity.
View Article and Find Full Text PDFThis work investigates the effect of different seats on violin and viola players sitting postures using High-Density-surface-Electromyography techniques (HDsEMG), biomechanical and comfort indices. Five types of chairs were assessed on 18 violin and three viola players by comparing: (a) pelvic tilt and kyphosis and lordosis angles, (b) subjective comfort indices, and (c) EMG amplitude of erector spinae and trapezius. Sitting "as you like" on a standard orchestra chair is the condition with the highest subjective comfort (but not significantly different from other chairs).
View Article and Find Full Text PDFProper muscle activity quantification is highly relevant to monitor and treat spastic cocontraction. As activity may distribute unevenly within muscle volumes, particularly for pennate calf muscles, surface electromyograms (EMGs) detected by traditional bipolar montage may provide biased estimations of muscle activity. We compared cocontraction estimates obtained using bipolar vs grids of electrodes (high-density EMG, HD-EMG).
View Article and Find Full Text PDFDuring standing, age-related differences in the activation of ankle muscles have been reported from surface electromyograms (EMGs) sampled locally. Given though activity seems to distribute unevenly within ankle muscles, the local sampling of surface EMGs may provide a biased view on how often and how much elderly and young individuals activate these muscles during standing. This study aimed therefore at sampling EMGs from multiple regions of individual ankle muscles to evaluate whether the distribution of muscle activity differs between aged and young subjects during standing.
View Article and Find Full Text PDFIn a broad view, fatigue is used to indicate a degree of weariness. On a muscular level, fatigue posits the reduced capacity of muscle fibres to produce force, even in the presence of motor neuron excitation via either spinal mechanisms or electric pulses applied externally. Prior to decreased force, when sustaining physically demanding tasks, alterations in the muscle electrical properties take place.
View Article and Find Full Text PDFRecent advances in high-density surface electromyogram (EMG) decomposition have made it a feasible task to discriminate single motor unit activity from surface EMG interference patterns, thus providing a noninvasive approach for examination of motor unit control properties. In the current study, we applied high-density surface EMG recording and decomposition techniques to assess motor unit firing behavior alterations poststroke. Surface EMG signals were collected using a 64-channel 2-D electrode array from the paretic and contralateral first dorsal interosseous (FDI) muscles of nine hemiparetic stroke subjects at different isometric discrete contraction levels between 2 to 10 N with a 2 N increment step.
View Article and Find Full Text PDFThe study of hand and finger movement is an important topic with applications in prosthetics, rehabilitation, and ergonomics. Surface electromyography (sEMG) is the gold standard for the analysis of muscle activation. Previous studies investigated the optimal electrode number and positioning on the forearm to obtain information representative of muscle activation and robust to movements.
View Article and Find Full Text PDFIntroduction: We investigated the motor unit (MU) firing pattern in type 2 diabetes mellitus (T2DM) patients by means of multichannel surface electromyography (SEMG).
Methods: Eight T2DM patients and 8 age-matched, healthy men performed a ramp-up contraction to 20% of maximal voluntary contraction (MVC). They also performed a sustained contraction at 10% of MVC during isometric knee extension.