Publications by authors named "Marco Feligioni"

Despite the efforts to identify fluid biomarkers to improve diagnosis of Frontotemporal dementia (FTD), only a few candidates have been described in recent years. In a previous study, we identified three circulating miRNAs (miR-92a-3p, miR-320a and miR-320b) differentially expressed in FTD patients with respect to healthy controls and/or Alzheimer's disease (AD) patients. Now, we investigated whether those changes could be due to miRNAs contained in neuron-derived extracellular vesicles (NDEVs).

View Article and Find Full Text PDF

Alzheimer's disease (AD), a neurodegenerative condition, is defined by neurofibrillary tangles, amyloid plaques, and gradual cognitive decline. Regardless of the advances in understanding AD's pathogenesis and progression, its causes are still contested, and there are currently no efficient therapies for the illness. The post-mortem analyses revealed widespread neuronal loss in multiple brain regions in AD, evidenced by a decrease in neuronal density and correlated with the disease's progression and cognitive deterioration.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) has been declared a new pandemic in March 2020. Although most patients are asymptomatic, those with underlying cardiovascular comorbidities may develop a more severe systemic infection which is often associated with fatal pneumonia. Nonetheless, neurological and cardiovascular manifestations could be present even without respiratory symptoms.

View Article and Find Full Text PDF

Retinal dysfunction is the most common cause of vision loss in several retinal disorders. It has been estimated a great increase in these pathologies that are becoming more globally widespread and numerous over time, also supported by the life expectancy increment. Among different types of retinopathies, we can account some that share causes, symptoms, and treatment including diabetic retinopathy, age-related macular degeneration, glaucoma, and retinitis pigmentosa.

View Article and Find Full Text PDF

Opposing dose-dependent effects of curcumin (Cur) have been documented in Retinal Pigment Epithelium (RPE); therefore, to shed the light on the mechanisms of action is crucial for ophthalmic applications. On this basis we explored new insights about the dose-dependent mechanisms triggered by Cur in human retinal pigment epithelial cells (ARPE-19). Three concentrations (0.

View Article and Find Full Text PDF

The exon skipping of α-Synuclein (α-Syn), the main constituent of the abnormal protein aggregation in Lewy bodies of Parkinson's disease (PD), forms four isoforms. In contrast to the full length α-Syn (α-Syn 140), little is known about the splice isoforms' properties and functions. SUMOylation, a post-translational modification, regulates α-Syn function, aggregation, and degradation, but information about α-Syn isoforms and the effect of SUMOylation on them is unknown.

View Article and Find Full Text PDF

The interest for the discovery of blood biomarkers for several neurological disorders, including Ischemic Stroke (IS), is growing and their identification in blood samples would be revolutionary allowing a fast and better pathology prediction or outcome and to collect information on patient recovery. The increased permeability of the blood-brain barrier, following a brain infarct, allows the detection of brain proteins in the blood flow. In this work, we analyzed the expression levels of two synaptic proteins Syntaxin (STX)-1a and Synaptosomal Associated Protein, 25 kDa (SNAP-25), in Peripheral Blood Mononuclear Cell (PBMC), serum and in Neuronal Derived Extracellular vesicles (NDEs) of IS patients, age and sex matched healthy control (HC) and younger HC (Y-HC).

View Article and Find Full Text PDF

Retinal degeneration is the major and principal cause behind many incurable blindness diseases. Several studies indicated the neuroprotective effect of Curcuma longa in eye pathologies, specifically retinopathy. However, the molecular mechanism behind its effect has not been completely elucidated.

View Article and Find Full Text PDF

Curcumin, the polyphenolic compound obtained from turmeric, has several pharmacological properties. These properties include antioxidant, antimicrobial, anti-angiogenic, anticarcinogenic, antiinflammatory, and immunomodulatory activities. Therefore, the clinical efficacy of this substance has been largely investigated for curing numerous disorders.

View Article and Find Full Text PDF

Retinal ganglion cell (RGC) loss is a pathologic feature common to several retinopathies associated to optic nerve damage, leading to visual loss and blindness. Although several scientific efforts have been spent to understand the molecular and cellular changes occurring in retinal degeneration, an effective therapy to counteract the retinal damage is still not available. Here we show that eyeballs, enucleated with the concomitant optic nerve cut (ONC), when kept in PBS for 24 h showed retinal and optic nerve degeneration.

View Article and Find Full Text PDF

Background: Oxidative stress (OS) is an imbalance between oxidant and antioxidant species and, together with other numerous pathological mechanisms, leads to the degeneration and death of motor neurons (MNs) in amyotrophic lateral sclerosis (ALS).

Main Body: Two of the main players in the molecular and cellular response to OS are NRF2, the transcription nuclear factor erythroid 2-related factor 2, and its principal negative regulator, KEAP1, Kelch-like ECH (erythroid cell-derived protein with CNC homology)-associated protein 1. Here we first provide an overview of the structural organization, regulation, and critical role of the KEAP1-NRF2 system in counteracting OS, with a focus on its alteration in ALS.

View Article and Find Full Text PDF

The nuclear RNA-binding protein TDP-43 forms abnormal cytoplasmic aggregates in the brains of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients and several molecular mechanisms promoting TDP-43 cytoplasmic mislocalization and aggregation have been proposed, including defects in nucleocytoplasmic transport, stress granules (SG) disassembly and post-translational modifications (PTM). SUMOylation is a PTM which regulates a variety of cellular processes and, similarly to ubiquitination, targets lysine residues. To investigate the possible regulatory effects of SUMOylation on TDP-43 activity and trafficking, we first assessed that TDP-43 is SUMO-conjugated in the nuclear compartment both covalently and non-covalently in the RRM1 domain at the predicted lysine 136 and SUMO-interacting motif (SIM, 106-110 residues), respectively.

View Article and Find Full Text PDF

Parkinson's disease (PD) and diabetes mellitus share similar pathophysiological characteristics, genetic and environmental factors. It has been reported that people with diabetes mellitus appear to have a remarkable higher incidence of PD than age matched non diabetic individuals. Evidences suggest that use of antidiabetic glitazone is associated with a diminished risk of PD incidence in patients with diabetes.

View Article and Find Full Text PDF

Huntington's disease (HD) is a progressive, neurodegenerative and inherited disease and recent years have witnessed the understanding of the cellular and molecular mechanisms related to HD. Safranal, an organic compound isolated from saffron, has been reported to have anti-apoptotic, anti-inflammatory and antioxidant activity and has studied in chronic and neurodegenerative disease. Therefore, this study was aimed to investigate the effect of safranal on 3-NP induced locomotor activity and biochemical alterations in rats.

View Article and Find Full Text PDF

The blood retinal barrier (BRB) is a fundamental eye component, whose function is to select the flow of molecules from the blood to the retina and vice-versa, and its integrity allows the maintenance of a finely regulated microenvironment. The outer BRB, composed by the choriocapillaris, the Bruch's membrane, and the retinal pigment epithelium, undergoes structural and functional changes in age-related macular degeneration (AMD), the leading cause of blindness worldwide. BRB alterations lead to retinal dysfunction and neurodegeneration.

View Article and Find Full Text PDF

Among the extensive public and scientific interest in the use of phytochemicals to prevent or treat human diseases in recent years, natural compounds have been highly investigated to elucidate their therapeutic effect on chronic human diseases including cancer, cardiovascular disease, and neurodegenerative disease. Curcumin, an active principle of the perennial herb , has attracted an increasing research interest over the last half-century due to its diversity of molecular targets, including transcription factors, enzymes, protein kinases, growth factors, inflammatory cytokines, receptors, and it's interesting pharmacological activities. Despite that, the clinical effectiveness of the native curcumin is weak, owing to its low bioavailability and rapid metabolism.

View Article and Find Full Text PDF
Article Synopsis
  • The spike protein (S protein) of coronaviruses, especially SARS-CoV-2, is crucial for virus entry into cells and may also affect the central nervous system (CNS).
  • The study found that the S proteins of SARS-CoV and SARS-CoV-2 are 77% identical, but SARS-CoV-2 has a more positive charge, enhancing its ability to bind with host cell receptors.
  • Increased binding energy of SARS-CoV-2’s spike protein to the ACE2 receptor suggests a stronger interaction, which could shed light on how the virus enters cells and potentially crosses the blood-brain barrier, impacting CNS infection.
View Article and Find Full Text PDF

Oxidative stress is a toxic cellular condition, strictly related to inflammation and known to be a common feature of many neurodegenerative diseases. The imbalanced redox state modifies several molecular processes including protein SUMOylation, JNK and Tau protein activation, important actors in Alzheimer's disease. In this study, we showed a strong interaction among SUMO-1-JNK-Tau proteins and their molecular targets in an in vitro model (SHSY5Y cell line) of oxidative stress in which a significant reduction of cell viability and an augmented cell death was induced by increased doses of H2O2.

View Article and Find Full Text PDF

kakusei is a non-coding RNA that is overexpressed in foraging bee brain. This study describes a possible role of the IEG kakusei during the daily foraging of honey bees. kakusei was found to be transiently upregulated within two hours during rewarded foraging.

View Article and Find Full Text PDF

Long-term potentiation (LTP) and long-term depression (LTD) of hippocampal synaptic transmission represent the principal experimental models underlying learning and memory. Alterations of synaptic plasticity are observed in several neurodegenerative disorders, including Alzheimer's disease (AD). Indeed, synaptic dysfunction is an early event in AD, making it an attractive therapeutic target for pharmaceutical intervention.

View Article and Find Full Text PDF

The neuronal loss caused by excessive glutamate release, or 'excitotoxicity', leads to several pathological conditions, including cerebral ischemia, epilepsy, and neurodegenerative diseases. Over-stimulation of presynaptic N-methyl-D-aspartate (NMDA) receptors is known to trigger and support glutamate spillover, while postsynaptic NMDA receptors are responsible for the subsequent apoptotic cascade. Almost all molecules developed so far are unable to selectively block presynaptic or postsynaptic NMDA receptors, therefore a deeper knowledge about intracellular NMDA pathways is required to design more specific inhibitors.

View Article and Find Full Text PDF

Hyperhomocysteinemia is recognized as a risk factor for several diseases, including cardiovascular and neurological conditions. Homocysteine (HCys) is a key metabolite involved in the biosynthesis and metabolism of methionine (Met), which plays a pivotal role in the physiological cell's life cycle. The biochemistry of Met is finely regulated by several enzymes that control HCys concentration.

View Article and Find Full Text PDF

In mammals, free d-aspartate (D-Asp) is abundant in the embryonic brain, while levels remain very low during adulthood as a result of the postnatal expression and activity of the catabolizing enzyme d-aspartate oxidase (DDO). Previous studies have shown that long-lasting exposure to nonphysiological, higher D-Asp concentrations in Ddo knockout (Ddo) mice elicits a precocious decay of synaptic plasticity and cognitive functions, along with a dramatic age-dependent expression of active caspase 3, associated with increased cell death in different brain regions, including hippocampus, prefrontal cortex, and substantia nigra pars compacta. Here, we investigate the yet unclear molecular and cellular events associated with the exposure of abnormally high D-Asp concentrations in cortical primary neurons and in the brain of Ddo mice.

View Article and Find Full Text PDF

Background: Mild cognitive impairment (MCI) is usually described as an intermediate phase between normal cognition and dementia. Identifying the subjects at a higher risk of progressing from MCI to AD is essential to manage this condition. The diagnosis of MCI is mainly clinical.

View Article and Find Full Text PDF

The largest part of tau secreted from AD nerve terminals and released in cerebral spinal fluid (CSF) is C-terminally truncated, soluble and unaggregated supporting potential extracellular role(s) of NH -derived fragments of protein on synaptic dysfunction underlying neurodegenerative tauopathies, including Alzheimer's disease (AD). Here we show that sub-toxic doses of extracellular-applied human NH tau 26-44 (aka NH htau) -which is the minimal active moiety of neurotoxic 20-22kDa peptide accumulating at AD synapses and secreted into parenchyma- acutely provokes presynaptic deficit in K -evoked glutamate release on hippocampal synaptosomes along with alteration in local Ca dynamics. Neuritic dystrophy, microtubules breakdown, deregulation in presynaptic proteins and loss of mitochondria located at nerve endings are detected in hippocampal cultures only after prolonged exposure to NH htau.

View Article and Find Full Text PDF