In vitro three-dimensional models aim to reduce and replace animal testing and establish new tools for oncology research and the development and testing of new anticancer therapies. Among the various techniques to produce more complex and realistic cancer models is bioprinting, which allows the realization of spatially controlled hydrogel-based scaffolds, easily incorporating different types of cells in order to recreate the crosstalk between cancer and stromal components. Bioprinting exhibits other advantages, such as the production of large constructs, the repeatability and high resolution of the process, as well as the possibility of vascularization of the models through different approaches.
View Article and Find Full Text PDFComput Methods Programs Biomed
June 2023
Background And Objective: Choosing the most appropriate denoising method to improve the quality of diagnostic images maximally is key in pre-processing of diffusion MRI images. Recent advancements in acquisition and reconstruction techniques have questioned traditional noise estimation methods favoring adaptive denoising frameworks, circumventing the need to know a priori information that is hardly available in a clinical setting. In this observational study, we compared two innovative adaptive techniques sharing some features, Patch2Self and Nlsam, through application on reference adult data at 3T and 7T.
View Article and Find Full Text PDFBioengineering (Basel)
February 2023
In oncology, the poor success rate of clinical trials is becoming increasingly evident due to the weak predictability of preclinical assays, which either do not recapitulate the complexity of human tissues (i.e., in vitro tests) or reveal species-specific outcomes (i.
View Article and Find Full Text PDFDiffusion kurtosis imaging (DKI) has undisputed advantages over the more classical diffusion magnetic resonance imaging (dMRI) as witnessed by the fast-increasing number of clinical applications and software packages widely adopted in brain imaging. However, in the neonatal setting, DKI is still largely underutilized, in particular in spinal cord (SC) imaging, because of its inherently demanding technological requirements. Due to its extreme sensitivity to non-Gaussian diffusion, DKI proves particularly suitable for detecting complex, subtle, fast microstructural changes occurring in this area at this early and critical stage of development, which are not identifiable with only DTI.
View Article and Find Full Text PDFBackground: In clinical assessment of Pectus Excavatum (PE), the indication to surgery is based not only on symptoms but also on quantitative markers calculated from Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) scans. According to clinical routine, these indexes are measured manually by radiologists with limited computer support. This process is time consuming and potentially subjected to inaccuracy and individual variability in measurements.
View Article and Find Full Text PDFAbsorption, distribution, metabolism and excretion (ADME) studies represent a fundamental step in the early stages of drug discovery. In particular, the absorption of orally administered drugs, which occurs at the intestinal level, has gained attention since poor oral bioavailability often led to failures for new drug approval. In this context, several in vitro preclinical models have been recently developed and optimized to better resemble human physiology in the lab and serve as an animal alternative to accomplish the 3Rs principles.
View Article and Find Full Text PDFMetastasis represents a dynamic succession of events involving tumor cells which disseminate through the organism via the bloodstream. Circulating tumor cells (CTCs) can flow the bloodstream as single cells or as multicellular aggregates (clusters), which present a different potential to metastasize. The effects of the bloodstream-related physical constraints, such as hemodynamic wall shear stress (WSS), on CTC clusters are still unclear.
View Article and Find Full Text PDFComput Methods Programs Biomed
February 2021
Background And Objectives: The number of preterm babies is steadily growing world-wide and these neonates are at risk of neuro-motor-cognitive deficits. The observation of spontaneous movements in the first three months of age is known to predict such risk. However, the analysis by specifically trained physiotherapists is not suited for the clinical routine, motivating the development of simple computerized video analysis systems, integrated with a well-structured Biobank to make available for preterm babies a growing service with diagnostic, prognostic and epidemiological purposes.
View Article and Find Full Text PDFMetastasis is a dynamic process involving the dissemination of circulating tumor cells (CTCs) through blood flow to distant tissues within the body. Nevertheless, the development of an in vitro platform that dissects the crucial steps of metastatic cascade still remains a challenge. We here developed an in vitro model of extravasation composed of (i) a single channel-based 3D cell laden hydrogel representative of the metastatic site, (ii) a circulation system recapitulating the bloodstream where CTCs can flow.
View Article and Find Full Text PDFBackground: Germinal matrix-intraventricular hemorrhage (GMH-IVH) is a common form of intracranial hemorrhage occurring in preterm neonates that may affect normal brain development. Although the primary lesion is easily identified on MRI by the presence of blood products, its exact extent may not be recognizable with conventional sequences. Quantitative susceptibility mapping (QSM) quantify the spatial distribution of magnetic susceptibility within biological tissues, including blood degradation products.
View Article and Find Full Text PDFPurpose of this study was the development of a 3D material to be used as substrate for breast cancer cell culture. We developed composite gels constituted by different concentrations of Alginate (A) and Matrigel (M) to obtain a structurally stable-in-time and biologically active substrate. Human aggressive breast cancer cells (i.
View Article and Find Full Text PDFFront Pediatr
August 2017
Introduction: Diffusion-weighted magnetic resonance imaging (DW-MRI) allows noninvasive investigation of brain structure . Diffusion tensor imaging (DTI) is a frequently used application of DW-MRI that assumes a single main diffusion direction per voxel, and is therefore not well suited for reconstructing crossing fiber tracts. Among the solutions developed to overcome this problem, constrained spherical deconvolution with probabilistic tractography (CSD-PT) has provided superior quality results in clinical settings on adult subjects; however, it requires particular acquisition parameters and long sequences, which may limit clinical usage in the pediatric age group.
View Article and Find Full Text PDFBinocular stereopsis is the ability of a visual system, belonging to a live being or a machine, to interpret the different visual information deriving from two eyes/cameras for depth perception. From this perspective, the ground-truth information about three-dimensional visual space, which is hardly available, is an ideal tool both for evaluating human performance and for benchmarking machine vision algorithms. In the present work, we implemented a rendering methodology in which the camera pose mimics realistic eye pose for a fixating observer, thus including convergent eye geometry and cyclotorsion.
View Article and Find Full Text PDFAs the EEG inverse problem does not have a unique solution, the sources reconstructed from EEG and their connectivity properties depend on forward and inverse modeling parameters such as the choice of an anatomical template and electrical model, prior assumptions on the sources, and further implementational details. In order to use source connectivity analysis as a reliable research tool, there is a need for stability across a wider range of standard estimation routines. Using resting state EEG recordings of N=65 participants acquired within two studies, we present the first comprehensive assessment of the consistency of EEG source localization and functional/effective connectivity metrics across two anatomical templates (ICBM152 and Colin27), three electrical models (BEM, FEM and spherical harmonics expansions), three inverse methods (WMNE, eLORETA and LCMV), and three software implementations (Brainstorm, Fieldtrip and our own toolbox).
View Article and Find Full Text PDFBackground: In the evaluation of Stereo-Electroencephalography (SEEG) signals, the physicist's workflow involves several operations, including determining the position of individual electrode contacts in terms of both relationship to grey or white matter and location in specific brain regions. These operations are (i) generally carried out manually by experts with limited computer support, (ii) hugely time consuming, and (iii) often inaccurate, incomplete, and prone to errors.
Results: In this paper we present SEEG Assistant, a set of tools integrated in a single 3DSlicer extension, which aims to assist neurosurgeons in the analysis of post-implant structural data and hence aid the neurophysiologist in the interpretation of SEEG data.
Objective: Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an established treatment for Parkinson's disease (PD). Anatomical connectivity analyses and task-related physiological studies have divided the STN into different functional domains: sensorimotor, limbic, and associative - located in its dorsolateral (dSTN), anteroventral (vSTN) and medial territories, respectively. Targeting sensorimotor STN is essential for stimulation efficacy and is supported by intraoperative micro-electrode recordings.
View Article and Find Full Text PDFThree-dimensional (3D) cell cultures represent fundamental tools for the comprehension of cellular phenomena both in normal and in pathological conditions. In particular, mechanical and chemical stimuli play a relevant role on cell fate, cancer onset and malignant evolution. Here, we use mechanically-tuned alginate hydrogels to study the role of substrate elasticity on breast adenocarcinoma cell activity.
View Article and Find Full Text PDFBackground: Invasive monitoring of brain activity by means of intracerebral electrodes is widely practiced to improve pre-surgical seizure onset zone localization in patients with medically refractory seizures. Stereo-Electroencephalography (SEEG) is mainly used to localize the epileptogenic zone and a precise knowledge of the location of the electrodes is expected to facilitate the recordings interpretation and the planning of resective surgery. However, the localization of intracerebral electrodes on post-implant acquisitions is usually time-consuming (i.
View Article and Find Full Text PDFMotivation: Molecular biology laboratories require extensive metadata to improve data collection and analysis. The heterogeneity of the collected metadata grows as research is evolving in to international multi-disciplinary collaborations and increasing data sharing among institutions. Single standardization is not feasible and it becomes crucial to develop digital repositories with flexible and extensible data models, as in the case of modern integrated biobanks management.
View Article and Find Full Text PDFBackground: Robust, extensible and distributed databases integrating clinical, imaging and molecular data represent a substantial challenge for modern neuroscience. It is even more difficult to provide extensible software environments able to effectively target the rapidly changing data requirements and structures of research experiments. There is an increasing request from the neuroscience community for software tools addressing technical challenges about: (i) supporting researchers in the medical field to carry out data analysis using integrated bioinformatics services and tools; (ii) handling multimodal/multiscale data and metadata, enabling the injection of several different data types according to structured schemas; (iii) providing high extensibility, in order to address different requirements deriving from a large variety of applications simply through a user runtime configuration.
View Article and Find Full Text PDFJ Exp Zool A Ecol Genet Physiol
March 2011
Here, we report the presence of the γ-aminobutyric acid (GABA)-ergic system in the calcisponge Leucandra aspera and examine the cellular localization of the components of this system, including GABA-like receptors using immunofluorescence and confocal microscopy. Furthermore, we demonstrate for the first time that GABA plays a functional role as a messenger in regulating sponge-feeding behavior. We found that both GABA(B) R1 and R2 subunits are present in the choanocytes of sponges as well as in the eso- and endopinacocytes.
View Article and Find Full Text PDFPurpose: The aim of this study was to design, develop and validate a simple, compact bioreactor system for tissue engineering. The resulting bioreactor was designed to achieve ease-of-use and low costs for automated cell-culturing procedures onto three-dimensional scaffolds under controlled torsion/traction regimes.
Methods: Highly porous poly-caprolactone-based scaffolds were used as substrates colonized by fibroblast cells (3T3 cell line).