Background: Monitoring circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs), known as liquid biopsies, continue to be developed as diagnostic and prognostic markers for a wide variety of cancer indications, mainly due to their minimally invasive nature and ability to offer a wide range of phenotypic and genetic information. While liquid biopsies maintain significant promising benefits, there is still limited information regarding the kinetics of ctDNA and CTCs following radiation therapy which remains a vital treatment modality in head and neck cancers. This study aims to describe the kinetics of ctDNA and CTCs following radiation exposure in a preclinical rabbit model with VX2 induced buccal carcinoma.
View Article and Find Full Text PDFPurpose: To determine whether plasma human papillomavirus (HPV) DNA predates clinical recurrence and compare its accuracy with 3-month fluorodeoxyglucose positron emission tomography (FDG-PET) in locally advanced cervical cancer.
Methods: This prospective multicenter study accrued 23 women with stage IB to IVA cervical cancer planned for definitive chemoradiation therapy (CRT). Plasma HPV DNA was measured serially by digital polymerase chain reaction, and FDG-PET was performed at 3 months post-CRT.
In cancer patients, circulating tumour-derived DNA (ctDNA) levels imperfectly reflect disease burden apparent on medical imaging. Further evaluation of ctDNA levels over time is needed to better understand the correlation with tumour growth and therapeutic response. We describe ctDNA kinetics within an orthotopic, immunocompetent preclinical rabbit model of local-regionally advanced head and neck squamous cell carcinoma (HNSCC).
View Article and Find Full Text PDFOsteosarcoma (OS) is the most common primary bone cancer, which occurs primarily in children and adolescents, severely affecting survivors' quality of life. Despite its chemosensitivity and treatment advances, long-term survival rates for OS patients have stagnated over the last 20 years. Thus, it is necessary to develop new molecularly targeted therapies for this metastatic bone cancer.
View Article and Find Full Text PDFBackground: Altered expression and activity of proteases is implicated in inflammation and cancer progression. An important negative regulator of protease activity is TIMP3 (tissue inhibitor of metalloproteinase 3). TIMP3 expression is lacking in many cancers including advanced prostate cancer, and this may facilitate invasion and metastasis by allowing unrestrained protease activity.
View Article and Find Full Text PDFSystemic and local signals must be integrated by mammary stem and progenitor cells to regulate their cyclic growth and turnover in the adult gland. Here, we show RANK-positive luminal progenitors exhibiting WNT pathway activation are selectively expanded in the human breast during the progesterone-high menstrual phase. To investigate underlying mechanisms, we examined mouse models and found that loss of RANK prevents the proliferation of hormone receptor-negative luminal mammary progenitors and basal cells, an accompanying loss of WNT activation, and, hence, a suppression of lobuloalveologenesis.
View Article and Find Full Text PDFInterleukin (IL)-12 is the key cytokine in the initiation of a Th1 response and has shown promise as an anti-cancer agent; however, clinical trials involving IL-12 have been unsuccessful due to toxic side-effects. To address this issue, lentiviral vectors were used to transduce tumour cell lines that were injected as an autologous tumour cell vaccine. The focus of the current study was to test the efficacy of this approach in a solid tumour model.
View Article and Find Full Text PDFTrends Endocrinol Metab
June 2012
Adult stem cells are recruited in response to specific physiological demands to regenerate, repair or maintain essential cellular components of tissues, while preserving self-renewal capacity. Signals that activate adult stem cells are not simply cell autonomous and stem cells are part of a larger dynamic framework, the stem cell 'niche', which integrates systemic and local cues to sustain stem cell functionality. The mammary stem cell niche responds readily to hormonal stimuli, generating pertinent signals that activate stem cells, culminating in stem cell expansion and tissue growth.
View Article and Find Full Text PDFRANKL (receptor activator of NF-κB ligand) is a crucial cytokine for regulating diverse biological systems such as innate immunity, bone homeostasis and mammary gland differentiation, operating through activation of its cognate receptor RANK. In these normal physiological processes, RANKL signals through paracrine and/or heterotypic mechanisms where its expression and function is tightly controlled. Numerous pathologies involve RANKL deregulation, such as bone loss, inflammatory diseases and cancer, and aberrant RANK expression has been reported in bone cancer.
View Article and Find Full Text PDFSome cancers have been stratified into subclasses based on their unique involvement of specific signaling pathways. The mapping of human cancer genomes is revealing a vast number of somatic alterations; however, the identification of clinically relevant molecular tumor subclasses and their respective driver genes presents challenges. This information is key to developing more targeted and personalized cancer therapies.
View Article and Find Full Text PDFThe cell death receptor Fas plays a role in the establishment of fulminant hepatitis, a major cause of drug-induced liver failure. Fas activation elicits extrinsic apoptotic and hepatoprotective signals; however, the mechanisms by which these signals are integrated during disease are unknown. Tissue inhibitor of metalloproteinases 3 (TIMP3) controls the critical sheddase a disintegrin and metalloproteinase 17 (ADAM17) and may dictate stress signaling.
View Article and Find Full Text PDFReproductive history is the strongest risk factor for breast cancer after age, genetics and breast density. Increased breast cancer risk is entwined with a greater number of ovarian hormone-dependent reproductive cycles, yet the basis for this predisposition is unknown. Mammary stem cells (MaSCs) are located within a specialized niche in the basal epithelial compartment that is under local and systemic regulation.
View Article and Find Full Text PDFMembrane-type matrix metalloproteinases (MT-MMPs) have emerged as key enzymes in tumor cell biology. The importance of MT1-MMP, in particular, is highlighted by its ability to activate pro-MMP-2 at the cell surface through the formation of a trimolecular complex comprised of MT1-MMP/tissue inhibitor of metalloproteinase-2 (TIMP-2)/pro-MMP-2. TIMPs 1-4 are physiological MMP inhibitors with distinct roles in the regulation of pro-MMP-2 processing.
View Article and Find Full Text PDFIntroduction: Extensive mammographic density in women is associated with increased risk for breast cancer. Mouse models provide a powerful approach to the study of human diseases, but there is currently no model that is suited to the study of mammographic density.
Methods: We performed individual manipulations of the stromal, epithelial and matrix components of the mouse mammary gland and examined the alterations using in vivo and ex vivo radiology, whole mount staining and histology.