Publications by authors named "Marco De Sanctis"

Sludge production in the wastewater treatment sector is consistently increasing and represents a critical environmental and economic issue. This study evaluated an unconventional approach for treating wastewater generated from the cleaning of non-hazardous plastic solid waste during the plastic recycling process. The proposed scheme was based on sequencing batch biofilter granular reactor (SBBGR) technology, which was compared with the activated sludge-based treatment currently in operation.

View Article and Find Full Text PDF

The fluctuation in the number of people in tourist areas affects the wastewater quality and quantity. Constructed wetlands (CWs) aim to simulate physical, chemical, and biological processes occurring in natural environments for wastewater treatment and are considered a sustainable system. The current study aimed at evaluating the effectiveness of in-vessel CWs for supporting the wastewaters treatment plants in periods of overloading.

View Article and Find Full Text PDF

The effectiveness of an advanced treatment of wastewater generated by non-hazardous plastic solid waste (PSW) washing, based on the Sequencing Batch Biofilter Granular Reactor (SBBGR), was assessed in terms of gross parameters, removal efficiencies and sludge production. The proposed treatment was also compared with the conventional treatment, which was based on primary and secondary treatments, using the activated sludge process, performed by Recuperi Pugliesi, a leading company in the plastic recycling industry located in Bari, Italy. The company produces low-density polyethylene (LDPE) regenerated granules from PSW used in agricultural and floricultural greenhouse activities and industrial packaging after a washing stage in the aqueous phase.

View Article and Find Full Text PDF

Nowadays, sludge management represents one of the most critical challenges in the field of sewage treatment for economic and environmental impacts. Therefore, the reduction of sludge has become a major issue for the operators of municipal wastewater treatment plants. In the present paper, a new system, whose acronym is MULESL (MUch LEss SLudge), is proposed and tested at full scale for reducing the quantity of sludge in the water line of the sewage treatment plant.

View Article and Find Full Text PDF

In the present study, the possibility of recovering both thermal energy and water for agricultural purposes from sewage is evaluated. A treatment plant, based on a sequencing batch biofilter granular reactor (SBBGR) followed by sand filtration and coupled with a solar wastewater source heat pump, was operated from September to November 2018 at a set-point temperature of 14 °C to verify the stability of heat recovery efficiency and the suitability of plant effluent to be reused for irrigation. Heat recovery did not influence the SBBGR treatment and disinfection efficiency, which removed about 90% of suspended solids, chemical and biochemical oxygen demand and ammonia, as well as 70% of total nitrogen, 3 log units of Escherichia coli and more than 1 log unit of Clostridium perfringens.

View Article and Find Full Text PDF

This study proposes the evaluation of the suitability of mesophilic anaerobic digestion as a simple technology for the treatment of the citrus waste produced by small-medium agro-industrial enterprises involved in the transformation of Citrus fruits. Two different stocks of citrus peel waste were used (i.e.

View Article and Find Full Text PDF

The availability of high quality water has become a constraint in several countries. Agriculture represents the main water user, therefore, wastewater reuse in this area could increase water availability for other needs. This research was aimed to provide a simplified scheme for treatment and reuse of municipal and domestic wastewater based on Sequencing Batch Biofilter Granular Reactors (SBBGRs).

View Article and Find Full Text PDF

In order to mitigate the potential effects on the human health which are associated to the use of treated wastewater in agriculture, antibiotic resistance genes (ARGs) are required to be carefully monitored in wastewater reuse processes and their spread should be prevented by the development of efficient treatment technologies. Objective of this study was the assessment of ARGs reduction efficiencies of a novel technological treatment solution for agricultural reuse of municipal wastewaters. The proposed solution comprises an advanced biological treatment (Sequencing Batch Biofilter Granular Reactor, SBBGR), analysed both al laboratory and pilot scale, followed by sand filtration and two different disinfection final stages: ultraviolet light (UV) radiation and peracetic acid (PAA) treatments.

View Article and Find Full Text PDF

In the present paper, the effectiveness of a Sequencing Batch Biofilter Granular Reactor (SBBGR) and its integration with different disinfection strategies (UV irradiation, peracetic acid) for producing an effluent suitable for agricultural use was evaluated. The plant treated raw domestic sewage, and its performances were evaluated in terms of the removal efficiency of a wide group of physical, chemical and microbiological parameters. The SBBGR resulted really efficient in removing suspended solids, COD and nitrogen with an average effluent concentration of 5, 32 and 10 mg/L, respectively.

View Article and Find Full Text PDF

Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.

View Article and Find Full Text PDF

The Sequencing Batch Biofilter Granular Reactor (SBBGR) is a promising wastewater treatment technology characterized by high biomass concentration in the system, good depuration performance and low sludge production. Its main drawback is the high energy consumption required for wastewater recirculation through the reactor bed to ensure both shear stress and oxygen supply. Therefore, the effect of low recirculation flow on the long-term (38 months) performance of a laboratory scale SBBGR was studied.

View Article and Find Full Text PDF

An innovative process based on ozone-enhanced biological degradation, carried out in an aerobic granular biomass system (SBBGR--Sequencing Batch Biofilter Granular Reactor), was tested at pilot scale for tannery wastewater treatment chosen as representative of industrial recalcitrant wastewater. The results have shown that the process was able to meet the current discharge limits when the biologically treated wastewater was recirculated through an adjacent reactor where a specific ozone dose of 120 mg O3/L(influent) was used. The benefits produced by using ozone were appreciable even visually since the final effluent of the process looked like tap water.

View Article and Find Full Text PDF

This paper reports the results of an investigation aimed at evaluating the performance of an innovative technology (SBBGR system - Sequencing Batch Biofilter Granular Reactor), characterised by a low sludge production, for treating municipal wastewater at demonstrative scale. The results have shown that even at the maximum investigated organic load (i.e.

View Article and Find Full Text PDF