Publications by authors named "Marco Cosentino-Lagomarsino"

Initiation of DNA replication in is coupled to cell size via the DnaA protein, whose activity is dependent on its nucleotide-bound state. However, the oscillations in DnaA activity have never been observed at the single-cell level. By measuring the volume-specific production rate of a reporter protein under control of a DnaA-regulated promoter, we could distinguish two distinct cell-cycle oscillators.

View Article and Find Full Text PDF

Experimental observations tracing back to the 1960s imply that ribosome quantities play a prominent role in determining a cell's growth. Nevertheless, in biologically relevant scenarios, growth can also be influenced by the levels of mRNA and RNA polymerase. Here, we construct a quantitative model of biosynthesis providing testable scenarios for these situations.

View Article and Find Full Text PDF

Macromolecular crowding can induce the collapse of a single long polymer into a globular form due to depletion forces of entropic nature. This phenomenon has been shown to play a significant role in compacting the genome within the bacterium into a well-defined region of the cell known as the nucleoid. Motivated by the biological significance of this process, numerous theoretical and computational studies have searched for the primary determinants of the behavior of polymer-crowder phases.

View Article and Find Full Text PDF

In eukaryotes, cytoplasmic and nuclear volumes are tightly regulated to ensure proper cell homeostasis. However, current methods to measure cytoplasmic and nuclear volumes, including confocal 3D reconstruction, have limitations, such as relying on two-dimensional projections or poor vertical resolution. Here, to overcome these limitations, we describe a method, N2FXm, to jointly measure cytoplasmic and nuclear volumes in single cultured adhering human cells, in real time, and across cell cycles.

View Article and Find Full Text PDF

The horizontal transfer of genes is fundamental for the eco-evolutionary dynamics of microbial communities, such as oceanic plankton, soil, and the human microbiome. In the case of an acquired beneficial gene, classic population genetics would predict a genome-wide selective sweep, whereby the genome spreads clonally within the community and together with the beneficial gene, removing genome diversity. Instead, several sources of metagenomic data show the existence of "gene-specific sweeps", whereby a beneficial gene spreads across a bacterial community, maintaining genome diversity.

View Article and Find Full Text PDF

Cancers feature substantial intratumoral heterogeneity of genetic and phenotypically distinct lineages. Although interactions between coexisting lineages are emerging as a potential contributor to tumor evolution, the extent and nature of these interactions remain largely unknown. We postulated that tumors develop ecological interactions that sustain diversity and facilitate metastasis.

View Article and Find Full Text PDF

The nucleus plays a central role in several key cellular processes, including chromosome organisation, DNA replication and gene transcription. Recent work suggests an association between nuclear mechanics and cell-cycle progression, but many aspects of this connection remain unexplored. Here, by monitoring nuclear shape fluctuations at different cell cycle stages, we uncover increasing inward fluctuations in late G2 and in early prophase, which are initially transient, but develop into instabilities when approaching the nuclear-envelope breakdown.

View Article and Find Full Text PDF

The early development of aneuploidy from an accidental chromosome missegregation shows contrasting effects. On the one hand, it is associated with significant cellular stress and decreased fitness. On the other hand, it often carries a beneficial effect and provides a quick (but typically transient) solution to external stress.

View Article and Find Full Text PDF

Compelling evidence shows that cancer persister cells represent a major limit to the long-term efficacy of targeted therapies. However, the phenotype and population dynamics of cancer persister cells remain unclear. We developed a quantitative framework to study persisters by combining experimental characterization and mathematical modeling.

View Article and Find Full Text PDF

In the last two decades, it has been shown that bacterial chromosomes have remarkable spatial organization at various scales, and they display well-defined movements during the cell cycle, for example to reliably segregate daughter chromosomes. More recently, various labs have begun investigating also the short time dynamics (displacements during time intervals of 0.1 s-100 s), which should be related to the molecular structure.

View Article and Find Full Text PDF

Growing cells adopt common basic strategies to achieve optimal resource allocation under limited resource availability. Our current understanding of such "growth laws" neglects degradation, assuming that it occurs slowly compared to the cell cycle duration. Here we argue that this assumption cannot hold at slow growth, leading to important consequences.

View Article and Find Full Text PDF

The way proliferating animal cells coordinate the growth of their mass, volume, and other relevant size parameters is a long-standing question in biology. Studies focusing on cell mass have identified patterns of mass growth as a function of time and cell cycle phase, but little is known about volume growth. To address this question, we improved our fluorescence exclusion method of volume measurement (FXm) and obtained 1700 single-cell volume growth trajectories of HeLa cells.

View Article and Find Full Text PDF

Growth and division are central to cell size. Bacteria achieve size homeostasis by dividing when growth has added a constant size since birth, termed the adder principle, by unknown mechanisms. Growth is well known to be regulated by guanosine tetraphosphate (ppGpp), which controls diverse processes from ribosome production to metabolic enzyme activity and replication initiation and whose absence or excess can induce stress, filamentation, and small growth-arrested cells.

View Article and Find Full Text PDF

Cells must control the cell cycle to ensure that key processes are brought to completion. In , it is controversial whether cell division is tied to chromosome replication or to a replication-independent inter-division process. A recent model suggests instead that processes may limit cell division with comparable odds in single cells.

View Article and Find Full Text PDF

Cells with blocked microtubule polymerization are delayed in mitosis, but eventually manage to proliferate despite substantial chromosome missegregation. While several studies have analyzed the first cell division after microtubule depolymerization, we have asked how cells cope long-term with microtubule impairment. We allowed 24 clonal populations of yeast cells with beta-tubulin mutations preventing proper microtubule polymerization, to evolve for ˜150 generations.

View Article and Find Full Text PDF

Recent results comparing the temporal program of genome replication of yeast species belonging to the clade support the scenario that the evolution of the replication timing program could be mainly driven by correlated acquisition and loss events of active replication origins. Using these results as a benchmark, we develop an evolutionary model defined as birth-death process for replication origins and use it to identify the evolutionary biases that shape the replication timing profiles. Comparing different evolutionary models with data, we find that replication origin birth and death events are mainly driven by two evolutionary pressures, the first imposes that events leading to higher double-stall probability of replication forks are penalized, while the second makes less efficient origins more prone to evolutionary loss.

View Article and Find Full Text PDF

Despite a boost of recent progress in dynamic single-cell measurements and analyses in , we still lack a mechanistic understanding of the determinants of the decision to divide. Specifically, the debate is open regarding the processes linking growth and chromosome replication to division and on the molecular origin of the observed "adder correlations," whereby cells divide, adding roughly a constant volume independent of their initial volume. In order to gain insight into these questions, we interrogate dynamic size-growth behavior of single cells across nutrient upshifts with a high-precision microfluidic device.

View Article and Find Full Text PDF

In contrast to their molecular mode of action, the system-level effect of antibiotics on cells is only beginning to be quantified. Molecular crowding is expected to be a relevant global regulator, which we explore here through the dynamic response phenotypes in , at single-cell resolution, under sub-lethal regimes of different classes of clinically relevant antibiotics, acting at very different levels in the cell. We measure chromosomal mobility through tracking of fast (<15 s timescale) fluctuations of fluorescently tagged chromosomal loci, and we probe the fluidity of the cytoplasm by tracking cytosolic aggregates.

View Article and Find Full Text PDF

In bacterial cells, inhibition of ribosomes by sublethal concentrations of antibiotics leads to a decrease in the growth rate despite an increase in ribosome content. The limitation of ribosomal activity results in an increase in the level of expression from ribosomal promoters; this can deplete the pool of RNA polymerase (RNAP) that is available for the expression of nonribosomal genes. However, the magnitude of this effect remains to be quantified.

View Article and Find Full Text PDF

Characterizing species diversity and composition of bacteria hosted by biota is revolutionizing our understanding of the role of symbiotic interactions in ecosystems. Determining microbiomes diversity implies the assignment of individual reads to taxa by comparison to reference databases. Although computational methods aimed at identifying the microbe(s) taxa are available, it is well known that inferences using different methods can vary widely depending on various biases.

View Article and Find Full Text PDF

Growing rod-shaped bacterial cells need to modulate the production rates of different surface and bulk components. Population data show that the balance between these rates is central for cell physiology and affects cell shape, but we still know little about these processes in single cells. We study a minimal stochastic model where single cells grow by two fluctuating volume-specific surface and volume growth rates, solving for the steady-state distributions and the correlation functions of the main geometric features.

View Article and Find Full Text PDF

Cell polarity refers to the intrinsic asymmetry of cells, including the orientation of the cytoskeleton. It affects cell shape and structure as well as the distribution of proteins and organelles. In migratory cells, front-rear polarity is essential and dictates movement direction.

View Article and Find Full Text PDF

Gene gain by horizontal gene transfer is a major pathway of genome innovation in bacteria. The current view posits that acquired genes initially need to be silenced and that a bacterial chromatin protein, H-NS, plays a role in this silencing. However, we lack direct observation of the early fate of a horizontally transferred gene to prove this theory.

View Article and Find Full Text PDF

The emergence of drug resistance limits the efficacy of targeted therapies in human tumors. The prevalent view is that resistance is a fait accompli: when treatment is initiated, cancers already contain drug-resistant mutant cells. Bacteria exposed to antibiotics transiently increase their mutation rates (adaptive mutability), thus improving the likelihood of survival.

View Article and Find Full Text PDF

Periodic light-dark cycles govern the timing of basic biological processes in organisms inhabiting land as well as the sea, where life evolved. Although prominent marine phytoplanktonic organisms such as diatoms show robust diel rhythms, the mechanisms regulating these processes are still obscure. By characterizing a bHLH-PAS nuclear protein, hereby named RITMO1, we shed light on the regulation of the daily life of diatoms.

View Article and Find Full Text PDF