Publications by authors named "Marco Cavaco"

Brain metastases (BM) are frequently found in cancer patients and, though their precise incidence is difficult to estimate, there is evidence for a correlation between BM and specific primary cancers, such as lung, breast, and skin (melanoma). Among all these, breast cancer is the most frequently diagnosed among women and, in this case, BM cause a critical reduction of the overall survival (OS), especially in triple negative breast cancer (TNBC) patients. The main challenge of BM treatment is the impermeable nature of the blood-brain barrier (BBB), which shields the central nervous systems (CNS) from chemotherapeutic drugs.

View Article and Find Full Text PDF

Blood-brain barrier (BBB) peptide-shuttles (BBBpS) are able to translocate the BBB and reach the brain. Despite the importance of brain targeting in pharmacology, BBBpS are poorly characterized. Currently, their development relies on the empiric assumption that cell-penetrating peptides (CPPs), with proven ability to traverse lipid membranes, will likewise behave as a BBBpS.

View Article and Find Full Text PDF
Article Synopsis
  • * A new dual-acting peptide, PepH3-vCPP2319, combines a cancer-targeting peptide with one that helps cross the blood-brain barrier (BBB), effectively killing TNBC cells without harming healthy cells.
  • * This peptide shows promise by rapidly penetrating the brain and exhibiting a multi-targeted approach that damages cancer cells and triggers cell death, potentially offering a new treatment strategy for TNBC and its brain metastases.
View Article and Find Full Text PDF

Introduction: Cancer is a major public health problem with over 19 million cases reported in 2020. Similarly to humans, dogs are also largely affected by cancer, with non-Hodgkin's lymphoma (NHL) among the most common cancers in both species. Comparative medicine has the potential to accelerate the development of new therapeutic options in oncology by leveraging commonalities between diseases affecting both humans and animals.

View Article and Find Full Text PDF

The formation of biofilms is a common virulence factor that makes bacterial infections difficult to treat and a major human health problem. Biofilms are bacterial communities embedded in a self-produced matrix of extracellular polymeric substances (EPS). In this work, we show that vCPP2319, a polycationic peptide derived from the capsid protein of Torque teno douroucouli virus, is active against preformed biofilms produced by both a reference strain and a clinical strain isolated from a diabetic foot infection, mainly by the killing of biofilm-embedded bacteria.

View Article and Find Full Text PDF

The uncharged 3-hydroxy-2-pyridine aldoximes with protonatable tertiary amines are studied as antidotes in toxic organophosphates (OP) poisoning. Due to some of their specific structural features, we hypothesize that these compounds could exert diverse biological activity beyond their main scope of application. To examine this further, we performed an extensive cell-based assessment to determine their effects on human cells (SH-SY5Y, HEK293, HepG2, HK-2, myoblasts and myotubes) and possible mechanism of action.

View Article and Find Full Text PDF

The emergence of resistant microorganisms has reduced the effectiveness of currently available antimicrobials, necessitating the development of new strategies. Plant antimicrobial peptides (AMPs) are promising candidates for novel drug development. In this study, we aimed to isolate, characterize, and evaluate the antimicrobial activities of AMPs isolated from Capsicum annuum.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) are among the fastest-growing classes of therapeutics in oncology. Although ADCs are in the spotlight, they still present significant engineering challenges. Therefore, there is an urgent need to develop more stable and effective ADCs.

View Article and Find Full Text PDF

Bruton's tyrosine kinase (BTK) is a member of the TEC-family kinases and crucial for the proliferation and differentiation of B-cells. We evaluated the therapeutic potential of a covalent inhibitor (JS25) with nanomolar potency against BTK and with a more desirable selectivity and inhibitory profile compared to the FDA-approved BTK inhibitors ibrutinib and acalabrutinib. Structural prediction of the BTK/JS25 complex revealed sequestration of Tyr551 that leads to BTK's inactivation.

View Article and Find Full Text PDF

The frequency of brain disease has increased significantly in the past years. After diagnosis, therapeutic options are usually limited, which demands the development of innovative therapeutic strategies. The use of antibody-drug conjugates (ADCs) is promising but highly limited by the existence of the blood-brain barrier (BBB).

View Article and Find Full Text PDF

Viral disease outbreaks affect hundreds of millions of people worldwide and remain a serious threat to global health. The current SARS-CoV-2 pandemic and other recent geographically- confined viral outbreaks (severe acute respiratory syndrome (SARS), Ebola, dengue, zika and ever-recurring seasonal influenza), also with devastating tolls at sanitary and socio-economic levels, are sobering reminders in this respect. Among the respective pathogenic agents, Zika virus (ZIKV), transmitted by mosquito vectors and causing the eponymous fever, is particularly insidious in that infection during pregnancy results in complications such as foetal loss, preterm birth or irreversible brain abnormalities, including microcephaly.

View Article and Find Full Text PDF

The emergence of antimicrobial resistance (AMR) is rapidly increasing and it is one of the significant twenty-first century's healthcare challenges. Unfortunately, the development of effective antimicrobial agents is a much slower and complex process compared to the spread of AMR. Consequently, the current options in the treatment of AMR are limited.

View Article and Find Full Text PDF

Breast cancer (BC) is the most commonly diagnosed cancer in women and one of the most common causes of cancer-related deaths. Despite intense research efforts, BC treatment still remains challenging. Improved drug development strategies are needed for impactful benefit to patients.

View Article and Find Full Text PDF

A major bottleneck in the successful development of central nervous system (CNS) drugs is the discovery and design of molecules that can cross the blood-brain barrier (BBB). Nano-delivery strategies are a promising approach that take advantage of natural portals of entry into the brain such as monoclonal antibodies (mAbs) targeting endogenous BBB receptors. However, the main selected mAbs rely on targeting broadly expressed receptors, such as the transferrin and insulin receptors, and in selection processes that do not fully mimic the native receptor conformation, leading to mistargeting and a low fraction of the administered dose effectively reaching the brain.

View Article and Find Full Text PDF

The incidence of metastatic breast cancer (MBC) is increasing and the therapeutic arsenal available to fight it is insufficient. Brain metastases, in particular, represent a major challenge for chemotherapy as the impermeable nature of the blood-brain barrier (BBB) prevents most drugs from targeting cells in the brain. For their ability to transpose biological membranes and transport a broad spectrum of bioactive cargoes, cell-penetrating peptides (CPPs) have been hailed as ideal candidates to deliver drugs across biological barriers.

View Article and Find Full Text PDF

Passing through the blood-brain barrier (BBB) to treat neurological conditions is one of the main hurdles in modern medicine. Many drugs with promising in vitro profiles become ineffective in vivo due to BBB restrictive permeability. In particular, this includes drugs such as antiviral porphyrins, with the ability to fight brain-resident viruses causing diseases such as HIV-associated neurocognitive disorders (HAND).

View Article and Find Full Text PDF

The activation of cannabinoid CB receptors (CBR) by Δ-tetrahydrocannabinol (THC), the main component of , induces analgesia. CBR activation, however, also causes cognitive impairment the serotonin 5HT receptor (5HTR), a component of a CBR-5HTR heteromer, posing a serious drawback for cannabinoid therapeutic use. We have shown that peptides reproducing CBR transmembrane (TM) helices 5 and 6, fused to a cell-penetrating sequence (CPP), can alter the structure of the CBR-5HTR heteromer and avert THC cognitive impairment while preserving analgesia.

View Article and Find Full Text PDF

Proteolytic instability is a critical limitation for peptide-based products. Although significant efforts are devoted to stabilize sequences against proteases/peptidases in plasma/serum, such approaches tend to be rather empirical, unspecific, time-consuming, and frequently not cost-effective. A more rational and potentially rewarding alternative is to identify the chemical grounds of susceptibility to enzymatic degradation of peptides so that proteolytic resistance can be tuned by manipulation of key chemical properties.

View Article and Find Full Text PDF

The biomedical application of discrete supramolecular metal-based structures, specifically self-assembled metallacages, is still an emergent field of study. Capitalizing on the knowledge gained in recent years on the development of 3-dimensional (3D) metallacages as novel drug delivery systems and agents, we explore here the possibility to target [PdL] cages (L = 3,5-bis(3-ethynylpyridine)phenyl ligand) to the brain. In detail, a new water-soluble homoleptic cage () tethered to a blood brain barrier (BBB)-translocating peptide was synthesized by a combination of solid-phase peptide synthesis (SPPS) and self-assembly procedures.

View Article and Find Full Text PDF

Proteolytic stability assessment is increasingly viewed as a fundamental component of peptide characterization, arguably of comparable importance as efficacy and toxicity data. A literature survey over the last decade reveals steady growth in the stability information available. However, it also uncovers two significant problems that hinder proper data comparison: 1) the use of different stability assays, and 2) the differences in how stability information is reported.

View Article and Find Full Text PDF

The characterization of biologically active peptides relies heavily on the study of their efficacy, toxicity, mechanism of action, cellular uptake, or intracellular location, using both and studies. These studies frequently depend on the use of fluorescence-based techniques. Since most peptides are not intrinsically fluorescent, they are conjugated to a fluorophore.

View Article and Find Full Text PDF

Background: The use of peptides as drug carriers across the blood-brain barrier (BBB) has increased significantly during the last decades. PepH3, a seven residue sequence (AGILKRW) derived from the α-helical domain of the dengue virus type-2 capsid protein, translocates across the BBB with very low toxicity. Somehow predictably from its size and sequence, PepH3 is degraded in serum relatively fast.

View Article and Find Full Text PDF

The incidence of brain metastases (BM) in cancer patients is increasing. After diagnosis, overall survival (OS) is poor, elicited by the lack of an effective treatment. Monoclonal antibody (mAb)-based therapy has achieved remarkable success in treating both hematologic and non-central-nervous system (CNS) tumors due to their inherent targeting specificity.

View Article and Find Full Text PDF

Chimeric proteins composed of a biologically active peptide and a fragment crystallizable (Fc) domain of immunoglobulin G (IgG) are known as peptibodies. They present an extended half-life due to neonatal Fc receptor (FcRn) salvage pathway, a decreased renal clearance rate owing to its increased size (≈70 kDa) and, depending on the peptide used in the design of the peptibody, an active-targeting moiety. Also, the peptides therapeutic activity is boosted by the number of peptides in the fusion protein (at least two peptides) and to some peptides' alterations.

View Article and Find Full Text PDF

Multidrug resistance (MDR), whereby cancer cells become resistant to the cytotoxic effects of various structurally and mechanistically unrelated chemotherapeutic agents, is a major problem in the clinical treatment of cancer. P-glycoprotein (P-gp) is a transmembrane protein responsible for drug efflux, which decreases drug intracellular bioavailability, consequently decreasing their efficacy against cancer. Solid Lipid Nanoparticles (SLNs) have not only the ability to protect the entrapped drug against proteolytic degradation, but also allow a selective intracellular targeting.

View Article and Find Full Text PDF