Purpose: We developed a segmentation method suited for both raw (for processing) and processed (for presentation) digital mammograms (DMs) that is designed to generalize across images acquired with systems from different vendors and across the two standard screening views.
Approach: A U-Net was trained to segment mammograms into background, breast, and pectoral muscle. Eight different datasets, including two previously published public sets and six sets of DMs from as many different vendors, were used, totaling 322 screen film mammograms (SFMs) and 4251 DMs (2821 raw/processed pairs and 1430 only processed) from 1077 different women.
Currently, there are multiple breast dosimetry estimation methods for mammography and its variants in use throughout the world. This fact alone introduces uncertainty, since it is often impossible to distinguish which model is internally used by a specific imaging system. In addition, all current models are hampered by various limitations, in terms of overly simplified models of the breast and its composition, as well as simplistic models of the imaging system.
View Article and Find Full Text PDFThe preoperative prediction of resectability pancreatic ductal adenocarcinoma (PDAC) is challenging. This retrospective single-center study examined tumor and vessel radiomics to predict the resectability of PDAC in chemo-naïve patients. The tumor and adjacent arteries and veins were segmented in the portal-venous phase of contrast-enhanced CT scans, and radiomic features were extracted.
View Article and Find Full Text PDFObjectives: To develop a radiomics model in contrast-enhanced cone-beam breast CT (CE-CBBCT) for preoperative prediction of axillary lymph node (ALN) status and metastatic burden of breast cancer.
Methods: Two hundred and seventy-four patients who underwent CE-CBBCT examination with two scanners between 2012 and 2021 from two institutions were enrolled. The primary tumor was annotated in each patient image, from which 1781 radiomics features were extracted with PyRadiomics.
Background: Accurate correction of x-ray scatter in dedicated breast computed tomography (bCT) imaging may result in improved visual interpretation and is crucial to achieve quantitative accuracy during image reconstruction and analysis.
Purpose: To develop a deep learning (DL) model to correct for x-ray scatter in bCT projection images.
Methods: A total of 115 patient scans acquired with a bCT clinical system were segmented into the major breast tissue types (skin, adipose, and fibroglandular tissue).
Background: Understanding the magnitude and variability of the radiation dose absorbed by the breast fibroglandular tissue during mammography and digital breast tomosynthesis (DBT) is of paramount importance to assess risks versus benefits. Although homogeneous breast models have been proposed and used for decades for this purpose, they do not accurately reflect the actual heterogeneous distribution of the fibroglandular tissue in the breast, leading to biases in the estimation of dose from these modalities.
Purpose: To develop and validate a method to generate patient-derived, heterogeneous digital breast phantoms for breast dosimetry in mammography and DBT.
Background: Breast cancer response to neoadjuvant chemotherapy (NAC) is typically evaluated through the assessment of tumor size reduction after a few cycles of NAC. In case of treatment ineffectiveness, this results in the patient suffering potentially severe secondary effects without achieving any actual benefit.
Purpose: To identify patients achieving pathologic complete response (pCR) after NAC by spatio-temporal radiomic analysis of dynamic contrast-enhanced (DCE) MRI images acquired before treatment.
The two-dimensional nature of mammography makes estimation of the overall breast density challenging, and estimation of the true patient-specific radiation dose impossible. Digital breast tomosynthesis (DBT), a pseudo-3D technique, is now commonly used in breast cancer screening and diagnostics. Still, the severely limited 3rd dimension information in DBT has not been used, until now, to estimate the true breast density or the patient-specific dose.
View Article and Find Full Text PDFA computer-aided diagnosis (CADx) system for breast masses is proposed, which incorporates both handcrafted and convolutional radiomic features embedded into a single deep learning model. The model combines handcrafted and convolutional radiomic signatures into a multi-view architecture, which retrieves three-dimensional (3D) image information by simultaneously processing multiple two-dimensional mass patches extracted along different planes through the 3D mass volume. Each patch is processed by a stream composed of two concatenated parallel branches: a multi-layer perceptron fed with automatically extracted handcrafted radiomic features, and a convolutional neural network, for which discriminant features are learned from the input patches.
View Article and Find Full Text PDFPurpose: To develop a patient-based breast density model by characterizing the fibroglandular tissue distribution in patient breasts during compression for mammography and digital breast tomosynthesis (DBT) imaging.
Methods: In this prospective study, 88 breast images were acquired using a dedicated breast computed tomography (CT) system. The breasts in the images were classified into their three main tissue components and mechanically compressed to mimic the positioning for mammographic acquisition of the craniocaudal (CC) and mediolateral oblique (MLO) views.
Purpose: To develop and evaluate the diagnostic performance of an algorithm for multi-marker radiomic-based classification of breast masses in dedicated breast computed tomography (bCT) images.
Methods: Over 1000 radiomic descriptors aimed at quantifying mass and border heterogeneity, morphology, and margin sharpness were developed and implemented. These included well-established texture and shape feature descriptors, which were supplemented with additional approaches for contour irregularity quantification, spicule and lobe detection, characterization of degree of infiltration, and differences in peritumoral compartments.
A deep learning (DL) network for 2D-based breast mass segmentation in unenhanced dedicated breast CT images was developed and validated, and its robustness in radiomic feature stability and diagnostic performance compared to manual annotations of multiple radiologists was investigated. 93 mass-like lesions were extensively augmented and used to train the network (n = 58 masses), which was then tested (n = 35 masses) against manual ground truth of a qualified breast radiologist with experience in breast CT imaging using the Conformity coefficient (with a value equal to 1 indicating a perfect performance). Stability and diagnostic power of 672 radiomic descriptors were investigated between the computerized segmentation, and 4 radiologists' annotations for the 35 test set cases.
View Article and Find Full Text PDFBackground And Objective: Performing patient-specific, pre-operative cochlea CT-based measurements could be helpful to positively affect the outcome of cochlear surgery in terms of intracochlear trauma and loss of residual hearing. Therefore, we propose a method to automatically segment and measure the human cochlea in clinical ultra-high-resolution (UHR) CT images, and investigate differences in cochlea size for personalized implant planning.
Methods: 123 temporal bone CT scans were acquired with two UHR-CT scanners, and used to develop and validate a deep learning-based system for automated cochlea segmentation and measurement.
Dedicated breast CT is a fully tomographic breast imaging modality with potential for various applications throughout breast cancer care. If implemented to perform dynamic contrast-enhanced (CE) imaging (4D breast CT), it could be useful to obtain functional information at high combined spatio-temporal resolution. Before developing a 4D dedicated breast CT system, a computer simulation method for breast CT perfusion imaging is proposed.
View Article and Find Full Text PDFDigital breast tomosynthesis (DBT) is currently used as an adjunct technique to digital mammography (DM) for breast cancer imaging. Being a quasi-3D image, DBT is capable of providing depth information on the internal breast glandular tissue distribution, which may be enough to obtain an accurate patient-specific radiation dose estimate. However, for this, information regarding the location of the glandular tissue, especially in the vertical direction (i.
View Article and Find Full Text PDFDigital phantoms are important tools for optimization and evaluation of x-ray imaging systems, and should ideally reflect the 3D structure of human anatomy and its potential variability. In addition, they need to include a good level of detail at a high enough spatial resolution to accurately model the continuous nature of the human anatomy. A pipeline to increase the spatial resolution of patient-based digital breast phantoms that can be used for computer simulations of breast imaging is proposed.
View Article and Find Full Text PDFPurpose: The purpose of this study was to develop a realistic patient-based 4D digital breast phantom including time-varying contrast enhancement for simulation of dedicated breast CT perfusion imaging.
Methods: A 3D static phantom is first created by segmenting a breast CT image from a healthy patient into skin, fibroglandular tissue, adipose tissue, and vasculature. For the creation of abnormal cases, a breast lesion model was developed and can be added to the phantom.
Purpose: To validate Monte Carlo (MC)-based breast dosimetry estimations using both a homogeneous and a 3D anthropomorphic breast phantom under polyenergetic irradiation for internal breast dosimetry purposes.
Methods: Experimental measurements were performed with a clinical digital mammography system (Mammomat Inspiration, Siemens Healthcare), using the x-ray spectrum selected by the automatic exposure control and a tube current-exposure time product of 360 mAs. A homogeneous 50% glandular breast phantom and a 3D anthropomorphic breast phantom were used to investigate the dose at different depths (range 0-4 cm with 1 cm steps) for the homogeneous case and at a depth of 2.
Purpose: To perform a comparative quantitative analysis of Power Doppler ultrasound (PDUS) and Contrast-Enhancement ultrasound (CEUS) for the quantification of thyroid nodules vascularity patterns, with the goal of identifying biomarkers correlated with the malignancy of the nodule with both imaging techniques.
Methods: We propose a novel method to reconstruct the vascular architecture from 3-D PDUS and CEUS images of thyroid nodules, and to automatically extract seven quantitative features related to the morphology and distribution of vascular network. Features include three tortuosity metrics, the number of vascular trees and branches, the vascular volume density, and the main spatial vascularity pattern.
Purpose: To develop and evaluate a new automatic classification algorithm to identify voxels containing skin, vasculature, adipose, and fibroglandular tissue in dedicated breast CT images.
Methods: The proposed algorithm combines intensity- and region-based segmentation methods with energy minimizing splines and unsupervised data mining approaches for classifying and segmenting the different tissue types. Breast skin segmentation is achieved by a region-growing method which uses constraints from the previously extracted skin centerline to add robustness to the model and to reduce the false positive rate.
Purpose: To investigate the performance, such as energy dependence and sensitivity, of thermoluminescent dosimeters (TLD), metal oxide semiconductor field-effect transistor dosimeters (MOSFET), and GafChromic™ films, and to validate the estimates of local dose deposition of a Monte Carlo (MC) simulation for breast dosimetry applications.
Methods: Experimental measurements were performed using a monoenergetic beam at the ELETTRA synchrotron radiation light source (Trieste, Italy). The three types of dosimeters were irradiated in a plane transversal to the beam axis and calibrated in terms of air kerma.