Publications by authors named "Marco Borghetti"

Water transport, mechanical support and storage are the vital functions provided by the xylem. These functions are carried out by different cells, exhibiting significant anatomical variation not only within species but also within individual trees. In this study, we used a comprehensive dataset to investigate the consistency of predicted hydraulic vessel diameter widening values in relation to the distance from the tree apex, represented by the relationship Dh ∝ Lβ (where Dh is the hydraulic vessel diameter, L the distance from the stem apex and β the scaling exponent).

View Article and Find Full Text PDF

Previous favorable climate conditions stimulate tree growth making some forests more vulnerable to hotter droughts. This so-called structural overshoot may contribute to forest dieback, but there is little evidence on its relative importance depending on site conditions and tree species because of limited field data. Here, we analyzed remote sensing (NDVI) and tree-ring width data to evaluate the impacts of the 2017 drought on canopy cover and growth in mixed Mediterranean forests (Fraxinus ornus, Quercus pubescens, Acer monspessulanum, Pinus pinaster) located in southern Italy.

View Article and Find Full Text PDF

The link between biodiversity and ecosystem function can depend on environmental conditions. This contingency can impede our ability to predict how biodiversity-ecosystem function (BEF) relationships will respond to future environmental change, causing a clear need to explore the processes underlying shifts in BEF relationships across large spatial scales and broad environmental gradients. We compiled a dataset on five functional traits (maximum height, wood density, specific leaf area [SLA], seed size, and xylem vulnerability to embolism [P]), covering 78%-90% of the tree species in the National Forest Inventory from Italy, to test (i) how a water limitation gradient shapes the functional composition and diversity of forests, (ii) how functional composition and diversity of trees relate to forest annual increment via mass ratio and complementarity effects, and (iii) how the relationship between functional diversity and annual increment varies between Mediterranean and temperate climate regions.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined how the growth of Pinus heldreichii, a pine species, responds to varying air temperatures across different elevations in the southern Italian Apennines.
  • Researchers conducted fieldwork over three years, collecting wood cores from 214 trees to assess growth patterns and climatic influences using a combination of tree-ring analysis and genetic methods.
  • The findings revealed a bell-shaped relationship between tree growth and air temperature, with increased growth at higher elevations linked to warmer temperatures, as well as a strong positive correlation between growth and April mean temperatures, indicating the trees' ability to acclimate to changing climatic conditions.
View Article and Find Full Text PDF

Past anthropogenic disturbances lowered the altitudinal distribution of the Mediterranean forests below 2,000 m a.s.l.

View Article and Find Full Text PDF

Wildfires have large-scale and profound effects on forest ecosystems, and they force burned forest areas toward a wide range of post-fire successional trajectories from simple reduction of ecosystem functions to transitions to other stable non-forest states. Fire disturbances represent a key driver of changes in forest structure and composition due to post-fire succession processes, thus contributing to modify ecosystem resilience to subsequent disturbances. Here, we aimed to provide useful insights into wildfire severity and post-fire recovery processes at the European continental scale, contributing to improved description and interpretation of large-scale wildfire spatial patterns and their effects on forest ecosystems in the context of climate change.

View Article and Find Full Text PDF

Old-growth mountain forests represent an ideal setting for studying long-term impacts of climate change. We studied the few remnants of old-growth forests located within the Pollino massif (southern Italy) to evaluate how the growth of conspecific young and old trees responded to climate change. We investigated two conifer species (Abies alba and Pinus leucodermis) and two hardwood species (Fagus sylvatica and Quercus cerris).

View Article and Find Full Text PDF

Understanding processes controlling forest dynamics has become particularly important in the context of ongoing climate change, which is altering the ecological fitness and resilience of species worldwide. However, whether forest communities would be threatened by projected macroclimate change or unaffected due to the controlling effect of local site conditions is still a matter for debate. After all, forest canopy buffer climate extremes and promote microclimatic conditions, which matters for functional plant response, and act as refugia for understory species in a changing climate.

View Article and Find Full Text PDF
Article Synopsis
  • Climate change is causing increased temperature and variable precipitation, leading to more extreme warm weather and droughts in Europe, which negatively affects forest productivity and composition.
  • The 2017 summer drought was studied using the normalized difference vegetation index (NDVI) to gauge forest productivity alongside climate factors like the standardized precipitation evapotranspiration index.
  • Results showed that Mediterranean oak forests were particularly vulnerable to drought, while some areas, especially at higher elevations or specific slopes, were less impacted, indicating the need for better assessments of forest resilience to climate extremes.
View Article and Find Full Text PDF

We analyzed the Italian National Forest Inventory data set to evaluate the interdependence of forest productivity, tree species richness (used to indicate biodiversity), climate, and soil factors. We tested the hypotheses that the relationship between biodiversity and forest productivity is positive and significant for all forests in Italy and whether the relationship is the same for forests growing in the temperate and Mediterranean bioclimatic domains (regions) of Italy. We used generalized additive models to explore the univariate response curves for the data and then performed structural equation modeling (SEM) and multi-group SEM analyses to evaluate the relationship between biodiversity and productivity.

View Article and Find Full Text PDF
Article Synopsis
  • The amount of carbon dioxide (CO2) in the air in the future is linked to how well forests can absorb carbon, which changes with the environment.
  • Scientists studied a model that predicts how trees grow and how much carbon they store to see if it stays consistent over time and during climate changes.
  • The study found that the model was mostly not very sensitive to its settings over time, but it reacted more to certain factors earlier in a forest's life and changed its reactions as the forest aged and under different climate conditions.
View Article and Find Full Text PDF

Forest decline induced by climate change is a global phenomenon that affects many tree species, mainly in drought-prone areas as the Mediterranean region. In southern Italy, several oak species have shown decline symptoms and elevated mortality since the 2000s due to drought stress. However, it remains to be answered whether decline occurred alone or whether a pathogen was also involved.

View Article and Find Full Text PDF

In this study, we investigated the role of climatic variability and atmospheric nitrogen deposition in driving long-term tree growth in canopy beech trees along a geographic gradient in the montane belt of the Italian peninsula, from the Alps to the southern Apennines. We sampled dominant trees at different developmental stages (from young to mature tree cohorts, with tree ages spanning from 35 to 160 years) and used stem analysis to infer historic reconstruction of tree volume and dominant height. Annual growth volume (G ) and height (G ) variability were related to annual variability in model simulated atmospheric nitrogen deposition and site-specific climatic variables, (i.

View Article and Find Full Text PDF

Drought stress causes forest dieback that is often explained by two interrelated mechanisms, namely hydraulic failure and carbon starvation. However, it is still unclear which functional and structural alterations, related to these mechanisms, predispose to dieback. Here we apply a multi-proxy approach for the characterization of tree structure (radial growth, wood anatomy) and functioning (δ13C, δ18O and non-structural carbohydrates (NSCs)) in tree rings before and after drought-induced dieback.

View Article and Find Full Text PDF

Hydraulic theory suggests that tall trees are at greater risk of drought-triggered death caused by hydraulic failure than small trees. In addition the drop in growth, observed in several tree species prior to death, is often interpreted as an early-warning signal of impending death. We test these hypotheses by comparing size, growth, and wood-anatomy patterns of living and now-dead trees in two Italian oak forests showing recent mortality episodes.

View Article and Find Full Text PDF

The objectives of this study were to provide a quantitative description of the long-term effects of environmental variability on xylem functional traits, in order to better assess xylem capacity to change in response to climate change. Twenty-six sites throughout the world, primarily in Europe, were chosen where results from long-term measurements of anatomical traits were previously published. Published data on long-term xylem anatomy (conduit size and density) and ring width variability were compiled across a range of tree species, which was subsequently related to variability in temperature, precipitation and nitrogen deposition rates across the study sites using generalized additive models and Bayesian methods.

View Article and Find Full Text PDF

In the Mediterranean region, the widely predicted rise in temperature, change in the precipitation pattern, and increase in the frequency of extreme climatic events are expected to alter the shape of ecological communities and to affect plant physiological processes that regulate ecosystem functioning. Although change in the mean values are important, there is increasing evidence that plant distribution, survival, and productivity respond to extremes rather than to the average climatic condition. The present study aims to assess the effects of both mean and extreme climatic conditions on radial growth and functional anatomical traits using long-term tree-ring time series of two co-existing Quercus spp.

View Article and Find Full Text PDF

The present study assessed the effects of climatic conditions on radial growth and functional anatomical traits, including ring width, vessel size, vessel frequency and derived variables, i.e., potential hydraulic conductivity and xylem vulnerability to cavitation in Ilex aquifolium L.

View Article and Find Full Text PDF

We present a global assessment of the relationships between the short-wave surface albedo of forests, derived from the MODIS satellite instrument product at 0.5° spatial resolution, with simulated atmospheric nitrogen deposition rates (Ndep ), and climatic variables (mean annual temperature Tm and total annual precipitation P), compiled at the same spatial resolution. The analysis was performed on the following five forest plant functional types (PFTs): evergreen needle-leaf forests (ENF); evergreen broad-leaf forests (EBF); deciduous needle-leaf forests (DNF); deciduous broad-leaf forests (DBF); and mixed-forests (MF).

View Article and Find Full Text PDF

Partially mycoheterotrophic (mixotrophic) plants gain carbon from both photosynthesis and their mycorrhizal fungi. This is considered an ancestral state in the evolution of full mycoheterotrophy, but little is known about this nutrition, and especially about the physiological balance between photosynthesis and fungal C gain. To investigate possible compensation between photosynthesis and mycoheterotrophy in the Mediterranean mixotrophic orchid Limodorum abortivum, fungal colonization was experimentally reduced in situ by fungicide treatment.

View Article and Find Full Text PDF

The objective of this study is to globally assess the effects of atmospheric nitrogen deposition and climate, associated with rising levels of atmospheric CO2 , on the variability of carbon isotope discrimination (Δ(13) C), and intrinsic water-use efficiency (iWUE) of angiosperm and conifer tree species. Eighty-nine long-term isotope tree-ring chronologies, representing 23 conifer and 13 angiosperm species for 53 sites worldwide, were extracted from the literature, and used to obtain long-term time series of Δ(13) C and iWUE. Δ(13) C and iWUE were related to the increasing concentration of atmospheric CO2 over the industrial period (1850-2000) and to the variation of simulated atmospheric nitrogen deposition and climatic variables over the period 1950-2000.

View Article and Find Full Text PDF

We investigated the effect of N deposition (Ndep) on intrinsic water-use efficiency (WUEi), the ratio of photosynthesis (A) to stomatal conductance (gs), for two Quercus cerris stands at different distances to an oil refinery in Southern Italy. We used delta13C in tree rings for assessing changes in WUEi; while the influence of climate and NOx emission was explored through delta18O and delta15N, respectively. Differences in WUEi between the two sites were significant, with trees exposed to different degrees of NOx emissions showing an abrupt increase with the onset of pollution.

View Article and Find Full Text PDF

The oxygen isotope enrichment of bulk leaf water (Delta(b)) was measured in cotton (Gossypium hirsutum) leaves to test the Craig-Gordon and Farquhar-Gan models under different environmental conditions. Delta(b) increased with increasing leaf-to-air vapor pressure difference (VPd) as an overall result of the responses to the ratio of ambient to intercellular vapor pressures (e(a)/e(i)) and to stomatal conductance (g(s)). The oxygen isotope enrichment of lamina water relative to source water (Delta(1)), which increased with increasing VPd, was estimated by mass balance between less enriched water in primary veins and enriched water in the leaf.

View Article and Find Full Text PDF

Temperate and boreal forests in the Northern Hemisphere cover an area of about 2 x 10(7) square kilometres and act as a substantial carbon sink (0.6-0.7 petagrams of carbon per year).

View Article and Find Full Text PDF

Observations on the net carbon exchange of forests in the European Mediterranean region, measured recently by the eddy covariance method, have revived interest in a phenomenon first characterized on agricultural and forest soils in East Africa in the 1950s and 1960s by H. F. Birch and now often referred to as the "Birch effect.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqlpll6kb85t0h2d1hrorsov3s8kvguib): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once